Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.037

Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices  

Khan, Firoz (Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kim, Jae Hyun (Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 129-139 More about this Journal
Abstract
The effects of N doping concentration and dopant moieties on the electrochemical properties of nanoporous graphene and their dependence on annealing temperature are investigated. Four types of N moieties - amide, amine, graphitic-N, and oxidized-N - are obtained, which transformed into pyridinic-N and pyrrolic-N upon annealing. The diffusion coefficient (D') of the ions in the electrode is the maximum at $400^{\circ}C$ because of a high level of N doping, whereas the second highest D0 value is obtained at $700^{\circ}C$ owing to a high level of reduction and N doping. The highest specific capacitance is obtained for the sample annealed at $400^{\circ}C$.
Keywords
Porous graphene; Nitrogen moieties; Nitrogen doping; Electrochemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Science 306 (2004) 666.   DOI
2 S. Sandoval, N. Kumar, J. Oro-Sole, A. Sundaresan, C.N.R. Rao, A. Fuertes, et al., Carbon 96 (2016) 594.   DOI
3 A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., Nano Lett. 8 (2008) 902.   DOI
4 R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, et al., Science 320 (2008) 1308.   DOI
5 K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., Solid State Commun. 146 (2008) 351.   DOI
6 E.J. Duplock, M. Scheffler, P.J.D. Lindan, Phys. Rev. Lett. 92 (2004) 225502.   DOI
7 S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, et al., Nat. Nanotechnol. 5 (2010) 574.   DOI
8 X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, et al., Nano Lett. 12 (2012) 2745.   DOI
9 Y. Ye, L. Dai, J. Mater. Chem. 22 (2012) 24224.   DOI
10 C. Li, X.L. Sui, Z.B. Wang, Q. Wang, D.M. Gu, Chem. Eng. J. 326 (2017) 265.   DOI
11 T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, et al., ACS Nano 5 (2011) 436.   DOI
12 Z. Wu, X.L. Huang, Z.L. Wang, J.J. Xu, H.G. Wang, X.B. Zhang, Sci. Rep. 4 (2014) 3669.
13 Y. Gong, D. Li, Q. Fu, C. Pan, Prog. Nat. Sci.: Mater. Int. 25 (2015) 379.   DOI
14 R. Wang, J. Lang, Y. Liu, Z. Lin, X. Yan, NPG Asia Mater. 7 (2015)e183.   DOI
15 J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48 (2010) 3825.   DOI
16 T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.-i. Ozaki, J. Phys. Chem. C 112 (2008) 14706.   DOI
17 L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, W. Mai, Chem. Commun. 52 (2016) 6296.   DOI
18 S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S.V. Dommele, J.H. Bitter, et al., J. Phys. Chem. C 113 (2009) 14302.
19 R. Yadav, C.K. Dixit, J. Sci.: Adv. Mater. Devices 2 (2017) 141.   DOI
20 H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112.   DOI
21 J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42 (2017) 911.   DOI
22 M.P. McDonald, A. Eltom, F. Vietmeyer, J. Thapa, Y.V. Morozov, D.A. Sokolov, et al., Nano Lett. 13 (2013) 5777.   DOI
23 S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, et al., Nature 442 (2006) 282.   DOI
24 L. Jiang, Z. Fan, Nanoscale 6 (2014) 1922.   DOI
25 Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, et al., Carbon 50 (2012) 1699.   DOI
26 J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, et al., Carbon 48 (2010) 1731.   DOI
27 Z.J. Fan, J. Yan, T. Wei, G.Q. Ning, L.J. Zhi, J.C. Liu, D.X. Cao, G.L. Wang, F. Wei, ACS Nano 5 (2011) 2787.   DOI
28 M. Li, Z. Tang, M. Leng, J. Xue, Adv. Funct. Mater. 24 (2014) 7495.   DOI
29 Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B 252 (2017) 1179.   DOI
30 Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, et al., Adv. Mater. 22 (2010) 3723.   DOI
31 P. Wang, Y. Zhang, Y. Yin, L. Fan, N. Zhang, K. Sun, Chem. Eng. J. 334 (2018) 257.   DOI
32 S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, J. Mater. Chem. A 1 (2013) 9409.   DOI
33 J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, et al., Carbon 48 (2010) 487.   DOI
34 P. Russo, A. Hu, G. Compagnini, Nano-Micro Lett. 5 (2013) 260.   DOI
35 L. Ren, K.N. Hui, K.S. Hui, Y. Liu, X. Qi, J. Zhong, et al., Sci. Rep. 5 (2015) 14229.   DOI
36 Y. He, X. Han, Y. Du, B. Song, P. Xu, B. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 3601.   DOI
37 https://en.wikipedia.org/wiki/Porosity.
38 https://en.wikipedia.org/wiki/Supercapacitor.
39 E. Frackowiak, F. Beguin, Carbon 39 (2001) 937.   DOI
40 Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, et al., Energy Environ. Sci. 5 (2012) 7950.   DOI
41 C. Ma, X. Shao, D. Cao, J. Mater. Chem. 22 (2012) 8911.   DOI
42 Z. Fan, J. Yan, G. Ning, T. Wei, L. Zhi, F. Wei, Carbon 60 (2013) 558.   DOI
43 C. Uthaisar, V. Barone, Nano Lett. 10 (2010) 2838.   DOI
44 Z.Y. Sui, C. Wang, Q.S. Yang, K. Shu, Y.W. Liu, B.H. Han, et al., J. Mater. Chem. A 3 (2015) 18229.   DOI
45 X.P. Tao, Y.J. Xiang, W.K. Sai, Z.Z. Zhen, S.P. Wen, Chin. Sci. Bull. 57 (2012) 2948.
46 C. Jiang, C. Yuan, P. Li, H.G. Wang, Y. Li, Q. Duan, J. Mater. Chem. A 4 (2016) 7251.   DOI
47 C. Zheng, X.F. Zhou, H.L. Cao, G.H. Wang, Z.P. Liu, RSC Adv. 5 (2015) 10739.   DOI
48 A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24 (2012) 5045.   DOI
49 I. Lahiri, W. Choi, Crit. Rev. Solid State Mater. Sci. 38 (2013) 126.
50 M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim, J.H. Lee, Nanoscale 7 (2015) 4820.   DOI
51 A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, et al., Chem. Soc. Rev. 45 (2016) 2458.   DOI
52 P. Rani, V.K. Jindal, RSC Adv. 3 (2013) 802.   DOI
53 X.R. Wang, X.L. Li, L. Zhang, Y.K. Yoon, P.K. Weber, H.L. Wang, et al., Science 324 (2009) 768.   DOI
54 F. Khan, S.H. Baek, J.H. Kim, Carbon 100 (2016) 608.   DOI
55 Q. Tang, Z. Zhou, Z. Chen, Nanoscale 5 (2013) 4541.   DOI
56 O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, et al., Science 266 (1994) 1683.   DOI
57 X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131 (2009) 15939.   DOI
58 M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 93 (2008) 113107.   DOI
59 D. Fox, A. O'Neill, D. Zhou, M. Boese, J.N. Coleman, H.Z. Zhang, Appl. Phys. Lett. 98 (2011) 243117.   DOI
60 M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara, Y. Matsumoto, J. Phys. Chem. C 116 (2012) 19822.   DOI
61 T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 7 (2014) 1059.   DOI
62 X. Fan, Z. Shen, A.Q. Liu, J.L. Kuo, Nanoscale 4 (2012) 2157.   DOI
63 X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, et al., Carbon 50 (2012) 3407.   DOI
64 F. Liu, M.H. Jang, H.D. Ha, J.H. Kim, Y.H. Cho, T.S. Seo, Adv. Mater. 25 (2013) 3657.   DOI
65 E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.   DOI
66 M.F.D. Lange, T.J.H. Vlugt, J. Gascon, F. Kapteijn, Microporous Mesoporous Mater. 200 (2014) 199.   DOI
67 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, Nat. Nanotechnol. 3 (2008) 210.   DOI
68 R. Lv, Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, et al., Sci. Rep. 2 (2012) 586.   DOI
69 I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1 (2010) 73.   DOI
70 J.H. Li, Y. Wang, Y.Y. Shao, D.W. Matson, Y.H. Lin, ACS Nano 4 (2010) 1790.   DOI
71 S. Liu, J. Tian, L. Wang, X. Sun, Carbon 49 (2011) 3158.   DOI
72 D.A. Shirley, Phys. Rev. B: Condens. Matter Mater. Phys. 5 (1972) 4709.   DOI
73 V.V. Nedelko, B.L. Korsunskit, F.I. Dubovitskit, G.L. Gromova, Vysokomol. Soyed. A17 (1975) 1477.
74 J. Wang, X. Gao, Y. Wang, C. Gao, RSC Adv. 4 (2014) 57476.   DOI
75 K. Wang, L. Li, T. Zhang, Z. Liu, Energy 70 (2014) 612.   DOI
76 S. Indrawirawan, H. Sun, X. Duan, S. Wang, J. Mater. Chem. A 3 (2015) 3432.   DOI
77 J. Peng, J. Weng, Carbon 94 (2015) 568.   DOI
78 X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Sci. Rep. 5 (2015) 11225.   DOI
79 F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, et al., Nanoscale 5 (2013) 7984.   DOI
80 Z. Lei, L. Lu, X.S. Zhao, Energy Environ. Sci. 5 (2012) 6391.   DOI
81 Z.Y. Yang, L.J. Jin, G.Q. Lu, Q.Q. Xian, Y.X. Zhang, L. Jing, et al., Adv. Funct. Mater. 24 (2014) 3917.   DOI
82 H. Wang, D. Zhang, T. Yan, Z. Wen, J. Zhang, L. Shi, et al., J. Mater. Chem. A 1 (2013) 11778.   DOI
83 Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, et al., Adv. Mater. 24 (2012) 5610.   DOI
84 J.W. Lee, J.M. Ko, J.D. Kim, Electrochim. Acta 85 (2012) 459.   DOI