• Title/Summary/Keyword: can materials

Search Result 20,889, Processing Time 0.046 seconds

Powder Metallurgy of Nanostructured High Strength Materials

  • Eckert, J.;Scudino, S.;Yu, P.;Duhamel, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.364-365
    • /
    • 2006
  • Nanostructured or partially amorphous Al-and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This work focuses on mechanically attrited powders and their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

  • PDF

Developing Textbook of Producing Easy-to-read Materials for Individuals with Developmental Disabilities (발달장애인을 위한 읽기쉬운자료 제작 교재 개발 연구)

  • Kim, Kyungyang;Nam, Boram
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.477-487
    • /
    • 2021
  • The purpose of this study is to develop textbooks that can be used in education for developing easy-to-read materials for people with developmental disabilities. The textbook was developed through the steps of analysis of guidelines for making easy-to-read materials, confirmation of the course, development of textbook contents, and verification of validity. The final developed materials were developed as textbooks, including reader classification, vocabulary, symbols, layout, and production practice for the development of easy-to-read materials with a total of 7 sessions. The important characteristics of the textbook developed in this study are: First, it classified readers who read easy-to-read materials for the first time in Korea and introduced them as Plain Language readers and Easy to Read readers. Second, the guideline that can be referenced while developing easy-to-read materials was developed as a checklist, so that it can be checked by itself. Third, thematic activity sheets and workbooks were developed so that they can be used as activity-oriented textbooks.

Construction of LRM-Based Bibliographic Structure for Describing Old Materials (고문헌 기술을 위한 LRM 기반 서지구조 구축: 에이전트, 장소, 시간 개체를 중심으로)

  • Minjung Park;Seungmin Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.3
    • /
    • pp.197-219
    • /
    • 2023
  • The cataloging rules of AACR families and bibliographic structure, which are broadly used in describing resources, show limitations in reflecting the unique bibliographic characteristics of Korean old materials. Thus this research proposed a bibliographic structure optimized to the unique bibliographic characteristics of Korean old materials by establishing bibliographic relationships between bibliographic entities based on the FRBR LRM conceptual model. The bibliographic relationships should be established in the way of connecting related materials in the bibliographic structure. These relationships should sufficiently reflect the bibliographic characteristics of the materials, physical variations, and content variations. Through this structure, the bibliographic description can be separated and integrated into the bibliograhpic unit by applying LRM conceptual model. By using the proposed structure, the organization, management, and utilization of Korean old materials can be more efficient. Also, it can provide a new bibliographic environment that can be the foundation of creating BIBFRAME records for Korean old materials.

A Study of Emergency Response for the Leakage Accident of Hazardous and Noxious Substances in a Port (항만에서의 위험·유해물질(HNS) 누출사고 대응에 관한 연구)

  • Woo, Young Jin;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.32-38
    • /
    • 2016
  • In general, lots of containers including various dangerous materials are transported to the port located in big cities such as Busan where massive residents live. Thus, it's really important how to make the emergency response for the leak accidents of dangerous materials and evaluate the direct or indirect damages to adjacent areas. In this study, in order to make reasonable emergency plans, CA (Consequence Analysis) is employed after selecting a key hazardous and noxious material, hydrogen fluroide. This material accounts for the third largest portion of cargo volume among all dangerous materials and can cause a huge damage in case of leakages. As a case study, Busan North port is selected as a test port since the portion of dangerous materials is higher than that of other ports in Busan. It is assumed that 1 ton of hydrogen fluoride is spilled at Busan North port. CA is performed to assess the impact of this accident. Throughout CA, the ERPG-2 range of a leak accident can be evaluated and this result can be used for decision making tools for mitigating the impact of a leak accident. To mitigate the damage of this accident, suitable a protective equipment and resident evacuation procedures should be prepared. Finally, this study can provide a systematic approach to make the emergency plan for reducing economical and personal losses.

Interatomic Potential Models for Ionic Systems - An Overview (이온 결합 물질에 대한 원자간 포텐셜 모델)

  • Lee, Byeong-Joo;Lee, Kwang-Ryeol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.425-439
    • /
    • 2011
  • A review of the development history of interatomic potential models for ionic materials was carried out paying attention to the way of future development of an interatomic potential model that can cover ionic, covalent and metallic bonding materials simultaneously. Earlier pair potential models based on fixed point charges with and without considering the electronic polarization effect were found to satisfactorily describe the fundamental physical properties of crystalline oxides (Ti oxides, $SiO_2$, for example) and their polymorphs, However, pair potential models are limited in dealing with pure elements such as Ti or Si. Another limitation of the fixed point charge model is that it cannot describe the charge variation on individual atoms depending on the local atomic environment. Those limitations lead to the development of many-body potential models(EAM or Tersoff), a charge equilibration (Qeq) model, and a combination of a many-body potential model and the Qeq model. EAM+Qeq can be applied to metal oxides, while Tersoff+Qeq can be applied to Si oxides. As a means to describe reactions between Si oxides and metallic elements, the combination of 2NN MEAM that can describe both covalent and metallic elements and the Qeq model is proposed.

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

Influences of Coatings and Solution Corrosivity on Cathodic Protection of Metallic Materials

  • Yoo, Y.R.;Chang, H.Y.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Painting has protected metallic stack but the paint films may be degraded and corrosion problem can be arisen. To protect the painted metal stack, cathodic protection can be applied. If cathodic protection is applied to bare metal, only small area may be protected. However, if cathodic protection is applied to painted metal surface, large area can be protected and the lifetime of paint films can be extended. High corrosion resistant alloys were corroded at a Flue Gas Desulfurization (FGD) facility of power plant within a short period and thus cathodic protection can be used to protect these metals. On the base of computer simulation, if cathodic protection is applied to bare metal in a FGD environment, it was estimated that applied current could almost be spent to protect area near the anode. However, if cathodic protection is applied to high resistant-coated metal, the much larger area from the anode could be effectively protected.

Air sterilization using filter and air ions: A review (필터와 이온을 이용한 공기살균법 연구동향)

  • Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.12 no.3
    • /
    • pp.73-80
    • /
    • 2016
  • Bioaerosol inactivation becomes important as people recognize the significance on the health effects of bioaerosols. There are several ways to inactivate such bioaerosols such as antimicrobial filters, UV, etc. For the on-filter-inactivation, proper antimicrobial materials coating should be applied. Recently, air ions are adopted to effectively reduce germ and virus activity. Limitations arise when each method is applied separately. Coating materials can experience chemical instability over time and temperature. Ionizers can generate ozone to prepare high ion concentrations. Combinations of developed techniques to enhance the inactivation efficiency were suggested. Researches on the air sterilization are reviewed and outlook is highlighted. Proper techniques such as combinations of filter material coating and air ion generation can be used to make air quality better for human living.

Preparation of Nanoparticles by Gas Phase Processes (기상 공정에 의한 나노 미립자 제조)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.536-546
    • /
    • 2007
  • The nanoparticles have several interesting properties which cannot be shown in their bulk materials because of their high ratio of surface area to volume. They can be used to manufacture the nanostructured materials, the industrial materials, or the catalyst materials etc.. We can prepare nanoparticles of various sizes with high degree of monodispersity by gas phase processes and those particles can be used as raw materials for various advanced functional materials. In this paper, we introduced the aerosol reactors to synthesize nanoparticles by gas phase processes and also analyzed several features of those aerosol reactors and tried to introduce the recent interesting studies on nanoparticle synthesis by gas phase processes.

Application Research on Mechanical Strength and Durability of Porous Basalt Concrete

  • Zhu, Yuelei;Li, Jingchun;Zhu, He;Jin, Long;Ren, Qifang;Ding, Yi;Li, Jinpeng;Sun, Qiqi;Wu, Zilong;Ma, Rui;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.115-124
    • /
    • 2022
  • Porous basalt aggregate is commonly used in roadbed engineering, but its application in concrete has rarely been studied. This paper studies the application of porous basalt in concrete. Porous basalt aggregate is assessed for its effects on mechanical strength and durability of prepared C50 concrete; because it has a hole structure, porous basalt aggregate is known for its porosity, and porous basalt aggregates can be made full of water through changing the content of saturated basalt; after full-water condition is achieved in porous basalt aggregate mixture of C50 concrete, we discuss its mechanical properties and durability. The effects of C50 concrete prepared with basalt aggregate on the compressive strength, water absorption, and electric flux of concrete specimens of different ages were studied through experiments, and the effects of different replacement rates of saturated porous basalt aggregate on the properties of concrete were also studied. The results show that porous basalt aggregate can be prepared as C50 concrete. For early saturated porous basalt aggregate concrete, its compressive strength decreases with the increase of the replacement rate of saturated aggregate; this occurs up to concrete curing at 28 d, when the replacement rate of saturated basalt aggregate is greater than or equal to 40 %. The compressive strength of concrete increases with the increase of the replacement rate of saturated aggregate. The 28 d electric flux decreases with the increase of the replacement rate of saturated aggregate, indicating that saturated porous basalt aggregate can improve the chloride ion permeability resistance of concrete in later stages.