DOI QR코드

DOI QR Code

Application Research on Mechanical Strength and Durability of Porous Basalt Concrete

  • Zhu, Yuelei (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Li, Jingchun (Anhui Road and Bridge Engineering Group Co., Ltd) ;
  • Zhu, He (Anhui Road and Bridge Engineering Group Co., Ltd) ;
  • Jin, Long (Anhui Road and Bridge Engineering Group Co., Ltd) ;
  • Ren, Qifang (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Ding, Yi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Li, Jinpeng (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Sun, Qiqi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Wu, Zilong (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Ma, Rui (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science and Engineering, Hanseo University)
  • Received : 2021.12.31
  • Accepted : 2022.02.07
  • Published : 2022.03.27

Abstract

Porous basalt aggregate is commonly used in roadbed engineering, but its application in concrete has rarely been studied. This paper studies the application of porous basalt in concrete. Porous basalt aggregate is assessed for its effects on mechanical strength and durability of prepared C50 concrete; because it has a hole structure, porous basalt aggregate is known for its porosity, and porous basalt aggregates can be made full of water through changing the content of saturated basalt; after full-water condition is achieved in porous basalt aggregate mixture of C50 concrete, we discuss its mechanical properties and durability. The effects of C50 concrete prepared with basalt aggregate on the compressive strength, water absorption, and electric flux of concrete specimens of different ages were studied through experiments, and the effects of different replacement rates of saturated porous basalt aggregate on the properties of concrete were also studied. The results show that porous basalt aggregate can be prepared as C50 concrete. For early saturated porous basalt aggregate concrete, its compressive strength decreases with the increase of the replacement rate of saturated aggregate; this occurs up to concrete curing at 28 d, when the replacement rate of saturated basalt aggregate is greater than or equal to 40 %. The compressive strength of concrete increases with the increase of the replacement rate of saturated aggregate. The 28 d electric flux decreases with the increase of the replacement rate of saturated aggregate, indicating that saturated porous basalt aggregate can improve the chloride ion permeability resistance of concrete in later stages.

Keywords

Acknowledgement

This work was financially supported by Initial Scientific Research Fund of Anhui Jianzhu University (No. 2017QD14), the 2014 Anhui Provincial Universities Excellent Young Talents Plan (No. gxyq64) and Cultivation project of scientific research project reserve of Anhui Jianzhu University (No. 2020XMK01). The Natural Science Found Foundation of Anhui Provance (Grant. 2008085QE246).

References

  1. T. Lu, Z. Li and H. Huang, Constr. Build. Mater., 289, 123166 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123166
  2. S. Jiang, L. Shen and W. Li, Constr. Build. Mater., 303, 124443 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124443
  3. S. H. Chu, C. S. Poon, C.S. Lam and L. Li, Constr. Build. Mater., 278, 122247 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122247
  4. L. E. Menchaca-Ballinas and J. I. Escalante-Garcia, Constr. Build. Mater., 262, 12003 (2020).
  5. I. Yoshitake, S. Ueno, Y. Ushio, H. Arano and S. Fukumoto, Constr. Build. Mater., 112, 440 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.185
  6. K. Ostrowski, D. Stefaniuk, L. Sadowski, K. Krzywinski, M. Gicala and M. Rozanska, Constr. Build. Mater., 238, 117794 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117794
  7. Y. B. Guo, G. F. Gao, L. Jing and V. P. W. Shim, Int. J. Impact Eng., 156, 103955 (2021). https://doi.org/10.1016/j.ijimpeng.2021.103955
  8. W. Zhao, Railway Invest. Surveying, 35, 60 (2009).
  9. X. C. Kang and G. X. Zhang, Water Power, 37, 55 (2011).
  10. J. Z. Cen, R. H. Zhu, C. Y. Jiang, W. B. Shi and S. Li, Chem. Eng. Des. Commun., 47, 188 (2021).
  11. Q. Q. Ma, P. Chen, X. P. Zou and R. J. Liu, Cem. Eng., 5, 89 (2013).
  12. H. Binici, Y. Yardim, O. Aksogan, R. Resatoglu, A. Dincer and A. Karrpuz, SM&T., 23, e00145 (2020).
  13. J. K. Chang and K. Zhang, Highway, 65, 194 (2020).
  14. Q. Li, H. Ding, F. M. Kong and W. Zhang., Architecture Technol., 50, 967 (2019).
  15. G. W. Li, Des. Hydroelectric Power Station, 17, 77 (2001).
  16. B. B. Xu, Z. W. Ou, W. Luo, N. Liu, W. Yuan and L. P. Fu, Mater. Rep., 34, 22065 (2020).
  17. P. Shen, J.-X. Lu, L. Lu, Y. He, F. Wang and S. Hu, Constr. Build. Mater., 312, 125373 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125373
  18. Z. Li, J. Liu, J. Xiao and P. Zhong, Cem. Concr. Compos., 108, 103444 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103444
  19. A. Alaskar, M. Alshannag and M. Higazey, Constr. Build. Mater., 288, 122998 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122998
  20. General Administration of Quality Supervision. Sand for building. China Sand and Stone Association. Inspection and Quarantine of the People's Republic of China. Retrieved July13, 2001 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF00023064&DbName=SCSF.
  21. China Academy of Building Research. Beijing Construction Engineering Group Co. LTD. China General Research Institute of Building Materials Science. Chongqing Institute of Architectural Science. Liaoning Institute of Building Science. Specification for mix proportion design of ordinary concrete.Industry Standard Construction industry. Retrieved April 22, 2011 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000006228395&DbName=SCSD.
  22. Industry Standard - Construction industry. Technical specification for lightweight aggregate concrete. Retrieved January 1, 2002 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000001060769&DbName=SCSD.
  23. M. A. Nawaz, B. Ali, L.A. Qureshi, H. M. U. Aslam, I. Hussain, B. Masood and S. S. Raza, Case Stud. Constr. Mater., 13, e00407 (2020). https://doi.org/10.1016/j.cscm.2020.e00407
  24. B. Ali, M.A. Gulzar and A. Raza, Constr. Build. Mater., 277, 122329 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122329
  25. A. E. Klausen, T. Kanstad, O. Bjontegaard and E. J. Sellevold, Cem. Concr. Compos., 109, 103574 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103574
  26. C. Q. Wang, H. L. Gao and J. Y. Tian, Concrete, 11, 1 (2018).
  27. W. Shao, L. Jiang and H. Zhou, Value Eng., 33, 136 (2014).
  28. X. Xie, Q. Feng, Z. Chen, L. Jiang and W. Lu, Constr. Build. Mater., 218, 119 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.041
  29. T. Gehlot, S. S. Sankhla and S. Parihar, Materials Today: Proceedings On the web. Retrieved March 21, 2022 from https://doi.org/10.1016/j.matpr.2021.01.789.
  30. J. Gortz, A. Zafar, S. Wieprecht and K. Terheiden, Constr. Build. Mater., 307, 124783 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124783
  31. J. Ren, X. Luo, R. Bai, C. Pan and J. Zhang, J. Build. Eng., 46, 103784 (2022). https://doi.org/10.1016/j.jobe.2021.103784
  32. P. Shen, L. Lu, F. Wang, Y. He, S. Hu, J. Lu and H. Zheng, Cem. Concr. Compos., 106, 103456 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103456
  33. D. Zou, K. Li, W. Li, H. Li and T. Cao, Constr. Build. Mater., 163, 949 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.170
  34. R. Li, Thesis (in China), p. 30-31, Ningxia University, Ningxia (2015).
  35. V. Cerny, M. Kocianova and R. Drochytka, Procedia Eng., 195, 9 (2017). https://doi.org/10.1016/j.proeng.2017.04.517
  36. J. X. Lu, P. L. Shen, H. A. Ali and C. S. Poon, Cem. Concr. Compos., 124, 104277 (2021). https://doi.org/10.1016/j.cemconcomp.2021.104277
  37. H. Liu, C. Liu, G. Bai and C. Zhu, Constr. Build. Mater., 259, 120397 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120397
  38. G. Q. Xiong, C. Wang; S. Zhou, X. L. Jia, W. Luo, J. W. Liu and X. Peng, Constr. Build. Mater., 229, 116936 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116936
  39. J. N. Sun, K. H. Kong, C. Q. Lye and S. T. Quek, Constr. Build. Mater., 315, 125365 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125365
  40. J. W. Bao, Q. F. Ren, L. Sun, Y. Ding and W.-C. Oh, Korean J. Mater. Res., 31, 195 (2021). https://doi.org/10.3740/MRSK.2021.31.4.195
  41. M. Kuroda, T. Watanabe and N. Terashi, Cem. Concr. Res., 30, 253 (2000). https://doi.org/10.1016/S0008-8846(99)00241-0
  42. J. Hu and P. Stroeven, Interface Sci., 12, 389 (2004). https://doi.org/10.1023/B:INTS.0000042337.39900.fb
  43. K. L. Scrivener, A. K. Crumbie and P. Laugesen, Interface Sci., 12, 411 (2004). https://doi.org/10.1023/B:INTS.0000042339.92990.4c