DOI QR코드

DOI QR Code

Interatomic Potential Models for Ionic Systems - An Overview

이온 결합 물질에 대한 원자간 포텐셜 모델

  • Lee, Byeong-Joo (Department of Materials Science and Engineering, Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Kwang-Ryeol (Computational Science Center, Korea Institute of Science and Technology)
  • 이병주 (포항공과대학교 신소재공학과, 첨단원자력대학원) ;
  • 이광렬 (한국과학기술연구원 계산과학센터)
  • Received : 2011.03.23
  • Published : 2011.06.25

Abstract

A review of the development history of interatomic potential models for ionic materials was carried out paying attention to the way of future development of an interatomic potential model that can cover ionic, covalent and metallic bonding materials simultaneously. Earlier pair potential models based on fixed point charges with and without considering the electronic polarization effect were found to satisfactorily describe the fundamental physical properties of crystalline oxides (Ti oxides, $SiO_2$, for example) and their polymorphs, However, pair potential models are limited in dealing with pure elements such as Ti or Si. Another limitation of the fixed point charge model is that it cannot describe the charge variation on individual atoms depending on the local atomic environment. Those limitations lead to the development of many-body potential models(EAM or Tersoff), a charge equilibration (Qeq) model, and a combination of a many-body potential model and the Qeq model. EAM+Qeq can be applied to metal oxides, while Tersoff+Qeq can be applied to Si oxides. As a means to describe reactions between Si oxides and metallic elements, the combination of 2NN MEAM that can describe both covalent and metallic elements and the Qeq model is proposed.

Keywords

Acknowledgement

Grant : 나노기반 정보에너지 사업본부-신기술융합형 성장동력사업

Supported by : 교육과학기술부

References

  1. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959). https://doi.org/10.1063/1.1730376
  2. L. V. Woodcock, Chem. Phys. Lett. 10, 257 (1971). https://doi.org/10.1016/0009-2614(71)80281-6
  3. A. Rahman, R. H. Fowler, and A. H. Narten, J. Chem. Phys. 57, 3010 (1972). https://doi.org/10.1063/1.1678700
  4. L. V. Woodcock, Advances in Molten Salts Chemistry, Vol. 3 Chap. 1, pp.1-75, Plenum, New York (1975).
  5. L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976). https://doi.org/10.1063/1.433213
  6. B. P. Feuston and S. H. Garofalini, J. Chem. Phys. 89, 5818 (1988). https://doi.org/10.1063/1.455531
  7. S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev. Lett. 61, 869 (1988). https://doi.org/10.1103/PhysRevLett.61.869
  8. B.W.H. van Beest, G.J. Kramer, and R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990). https://doi.org/10.1103/PhysRevLett.64.1955
  9. C. R. A. Catlow and A.M. Stoneham, J. Phys. C: Solid State Phys. 16, 4321 (1983). https://doi.org/10.1088/0022-3719/16/22/010
  10. J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953). https://doi.org/10.1103/PhysRev.92.890
  11. Z. Jiang and R. A. Brown, Chem. Engin. Sci. 49, 2991 (1994). https://doi.org/10.1016/0009-2509(94)E0116-8
  12. R. Soulairol and F. Cleri, Solid State Sciences 12, 163 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.05.004
  13. B .G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958). https://doi.org/10.1103/PhysRev.112.90
  14. G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, Phys. Rev. B 11, 3060 (1975). https://doi.org/10.1103/PhysRevB.11.3060
  15. G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys. 18, 1149-1161 (1985). https://doi.org/10.1088/0022-3719/18/6/010
  16. P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsj, Phys. Rev. B 41, 12197 (1990). https://doi.org/10.1103/PhysRevB.41.12197
  17. P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 (2002). https://doi.org/10.1063/1.1513312
  18. D. Herzbach, K. Binder, and M.H. Mser, J. Chem. Phys. 123, 124711 (2005). https://doi.org/10.1063/1.2038747
  19. J. D. Gale and A.L. Rohl, Mol. Simul. 29, 291 (2003). https://doi.org/10.1080/0892702031000104887
  20. J. H. Rose, F. Ferrante, and J. R. Smith, Phys. Rev. Lett. 47, 675 (1981). https://doi.org/10.1103/PhysRevLett.47.675
  21. J. R. Smith, F. Ferrante, and J. H. Rose, Phys. Rev. B 25, 1419 (1982). https://doi.org/10.1103/PhysRevB.25.1419
  22. J. H. Rose, F. Ferrante, and J. R. Smith, Phys. Rev. B 28, 1835 (1983). https://doi.org/10.1103/PhysRevB.28.1835
  23. J. H. Rose, J. R. Smith, F. Guinea, and F. Ferrante, Phys. Rev. B 29, 2963 (1984). https://doi.org/10.1103/PhysRevB.29.2963
  24. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986) https://doi.org/10.1103/PhysRevLett.56.632
  25. J. Tersoff, Phys. Rev. B 37, 6991 (1988). https://doi.org/10.1103/PhysRevB.37.6991
  26. J. Tersoff, Phys. Rev. B 38, 9902 (1988). https://doi.org/10.1103/PhysRevB.38.9902
  27. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988). https://doi.org/10.1103/PhysRevLett.61.2879
  28. J. Tersoff, Phys. Rev. B 39, 5566 (1989). https://doi.org/10.1103/PhysRevB.39.5566
  29. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983). https://doi.org/10.1103/PhysRevLett.50.1285
  30. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443
  31. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986). https://doi.org/10.1103/PhysRevB.33.7983
  32. M. I. Baskes, J. S. Nelson, and A. F. Wright, Phys. Rev. B 40, 6085 (1989). https://doi.org/10.1103/PhysRevB.40.6085
  33. M. I. Baskes, Phys. Rev. B 46, 2727 (1992). https://doi.org/10.1103/PhysRevB.46.2727
  34. M. I. Baskes and R. A. Johnson, Modelling Simul. Mater. Sci. Eng. 2, 147 (1994). https://doi.org/10.1088/0965-0393/2/1/011
  35. M. I. Baskes, Mater. Chem. Phys. 50, 152 (1997). https://doi.org/10.1016/S0254-0584(97)80252-0
  36. B.-J. Lee and M. I. Baskes, Phys. Rev. B 62, 8564 (2000).
  37. B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Phys. Rev. B 64, 184102 (2001).
  38. H.-K. Kim, W.-S. Jung, and B.-J. Lee, J. Mater. Res. 25, 1288 (2010). https://doi.org/10.1557/JMR.2010.0182
  39. B.-J. Lee, J. Phase Equilib. Diff. 30, 509 (2009). https://doi.org/10.1007/s11669-009-9565-3
  40. B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, CALPHAD 34, 510 (2010). https://doi.org/10.1016/j.calphad.2010.10.007
  41. F. H. Stillinger and A. Weber, Phys. Rev. B 31, 5262 (1985). https://doi.org/10.1103/PhysRevB.31.5262
  42. T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and I. Ohdomari, Jpn. J. Appl. Phys. 38, L366 (1999). https://doi.org/10.1143/JJAP.38.L366
  43. T. Watanabe, D. Yamasaki, K. Tatsumura, and I. Ohdomari, Appl. Surf. Sci. 234, 207 (2004). https://doi.org/10.1016/j.apsusc.2004.05.035
  44. Y. Umeno, T. Kitamura, K. Date, M. Hayashi, and T. Iwasaki, Comput. Mater. Sci. 25, 447 (2002). https://doi.org/10.1016/S0927-0256(02)00322-1
  45. S.R. Billeter, A. Curioni, D. Fischer and W. Andreoni, Phys. Rev. B 73, 155329 (2006).
  46. M. I. Baskes, "Modified Embedded Atom Method Calculations of Interfaces," Report number: SAND--96-8484C, Sandia National Laboratories, Livermore, (1996).
  47. C.-L. Kuo and P. Clancy, Modelling Simul. Mater. Sci. Eng. 13, 1309 (2005). https://doi.org/10.1088/0965-0393/13/8/008
  48. A. K. Rappe and W. A. Goddard III, J. Phys. Chem. 95, 3358 (1991). https://doi.org/10.1021/j100161a070
  49. R. S. Mulliken, J. Chem. Phys. 2, 782 (1934). https://doi.org/10.1063/1.1749394
  50. R. T. Sanderson, Science 11, 207 (1955).
  51. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960).
  52. R. P. Iczkowsky and J. L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961). https://doi.org/10.1021/ja01478a001
  53. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978). https://doi.org/10.1063/1.436185
  54. P. Politzer and H. Weinstein, J. Chem. Phys. 71, 4218 (1979). https://doi.org/10.1063/1.438228
  55. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983). https://doi.org/10.1021/ja00364a005
  56. W. J. Mortier, K. van Genechten, and J. Gasteiger, J. Am. Chem. Soc. 107, 829 (1985). https://doi.org/10.1021/ja00290a017
  57. W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986). https://doi.org/10.1021/ja00275a013
  58. E. Demiralp, T. Cagin, and W.A. Goddard, Phys. Rev. Lett. 82, 1708 (1999). https://doi.org/10.1103/PhysRevLett.82.1708
  59. V. Swamy and J. D. Gale, Phys. Rev. B 62, 5406 (2000). https://doi.org/10.1103/PhysRevB.62.5406
  60. F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11996 (1994). https://doi.org/10.1103/PhysRevB.50.11996
  61. T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. 82, 4866 (1999). https://doi.org/10.1103/PhysRevLett.82.4866
  62. T. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 71, 205413 (2005).
  63. N. Rosen, Phys. Rev. 38, 255 (1931). https://doi.org/10.1103/PhysRev.38.255
  64. C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951). https://doi.org/10.1063/1.1748100
  65. S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London Ser. A 373, 27 (1980). https://doi.org/10.1098/rspa.1980.0135
  66. E. R. Smith, Proc. R. Soc. London Ser. A 375, 475 (1981). https://doi.org/10.1098/rspa.1981.0064
  67. D. E. Parry, Surf. Sci. 49, 433 (1975). https://doi.org/10.1016/0039-6028(75)90362-3
  68. J. Hautman and M. L. Klein, Mol. Phys. 75, 379 (1992). https://doi.org/10.1080/00268979200100301
  69. D. M. Heyes, Surf. Sci. Lett. 293, L857 (1993).
  70. X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. N. Neurock, Phys. Rev. B 69, 035402 (2004).
  71. X. W. Zhou and H. N. G. Wadley, J. Phys.: Condens. Matter 17, 3619 (2005). https://doi.org/10.1088/0953-8984/17/23/014
  72. J. R. Smith, H. Schlosser, W. Leaf, J. Ferrante, and J. H. Rose, Phys. Rev. A 39, 514 (1989). https://doi.org/10.1103/PhysRevA.39.514
  73. J. Ferrante, H. Schlosser, and J. H. Rose, Phys. Rev. A 43, 3487 (1991). https://doi.org/10.1103/PhysRevA.43.3487
  74. I. Lazic, M. Ernst, and B. Thijsse, "Atomistic Simulation Methods for Studying Self Healing Mechanisms in $Al/Al_2O_3$," Proceedings of the First International Conference on Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands, (2007).
  75. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, (1981).
  76. A. Yasukawa, JSME Int. J., Ser. A 39, 313 (1996).
  77. T. Iwasaki and H. Miura, J. Mater. Res. 16, 1789 (2001). https://doi.org/10.1557/JMR.2001.0247
  78. A. Yasukawa, in Japan Society of Mechanical Engineers, p.71, Sept. 19, Hitachi City, Ibaraki, Japan, (2003).
  79. A. Yasukawa, J. Solid Mech. Mater. Engin. 4, 599 (2010). https://doi.org/10.1299/jmmp.4.599
  80. J. Yu, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 75, 085311 (2007)
  81. T.-R. Shan, B. D. Devine, M. Hawkins, A. Asthagiri, S. R. Phillpot, and S. B. Sinnott, Phys. Rev. B 82, 235302 (2010).
  82. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999). https://doi.org/10.1063/1.478738
  83. T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 81, 125328 (2010).
  84. B. D. Devine, T.-R. Shan, S. B. Sinnott, and S. R. Phillpot, "Charge Optimized Many-Body Potential for the Copper/Copper Oxide System," (2011) unpublished.
  85. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, "ReaxFF: A Reactive Force Field for Hydrocarbons," J. Phys. Chem. A 105, 9396 (2001). https://doi.org/10.1021/jp004368u
  86. A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard III, J. Phys. Chem. A 107, 3803 (2003). https://doi.org/10.1021/jp0276303
  87. D. W. Brenner, Phys. Rev. B 42, 9458 (1990). https://doi.org/10.1103/PhysRevB.42.9458
  88. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000). https://doi.org/10.1063/1.481208
  89. D. W Brenner, O. A Shenderova, J. A Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). https://doi.org/10.1088/0953-8984/14/4/312