Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.3.115

Application Research on Mechanical Strength and Durability of Porous Basalt Concrete  

Zhu, Yuelei (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Li, Jingchun (Anhui Road and Bridge Engineering Group Co., Ltd)
Zhu, He (Anhui Road and Bridge Engineering Group Co., Ltd)
Jin, Long (Anhui Road and Bridge Engineering Group Co., Ltd)
Ren, Qifang (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Ding, Yi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Li, Jinpeng (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Sun, Qiqi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Wu, Zilong (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Ma, Rui (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Oh, Won-Chun (Department of Advanced Materials Science and Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.32, no.3, 2022 , pp. 115-124 More about this Journal
Abstract
Porous basalt aggregate is commonly used in roadbed engineering, but its application in concrete has rarely been studied. This paper studies the application of porous basalt in concrete. Porous basalt aggregate is assessed for its effects on mechanical strength and durability of prepared C50 concrete; because it has a hole structure, porous basalt aggregate is known for its porosity, and porous basalt aggregates can be made full of water through changing the content of saturated basalt; after full-water condition is achieved in porous basalt aggregate mixture of C50 concrete, we discuss its mechanical properties and durability. The effects of C50 concrete prepared with basalt aggregate on the compressive strength, water absorption, and electric flux of concrete specimens of different ages were studied through experiments, and the effects of different replacement rates of saturated porous basalt aggregate on the properties of concrete were also studied. The results show that porous basalt aggregate can be prepared as C50 concrete. For early saturated porous basalt aggregate concrete, its compressive strength decreases with the increase of the replacement rate of saturated aggregate; this occurs up to concrete curing at 28 d, when the replacement rate of saturated basalt aggregate is greater than or equal to 40 %. The compressive strength of concrete increases with the increase of the replacement rate of saturated aggregate. The 28 d electric flux decreases with the increase of the replacement rate of saturated aggregate, indicating that saturated porous basalt aggregate can improve the chloride ion permeability resistance of concrete in later stages.
Keywords
basalt; porous aggregate; concrete; mechanical property; durability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Lu, Z. Li and H. Huang, Constr. Build. Mater., 289, 123166 (2021).   DOI
2 S. H. Chu, C. S. Poon, C.S. Lam and L. Li, Constr. Build. Mater., 278, 122247 (2021).   DOI
3 L. E. Menchaca-Ballinas and J. I. Escalante-Garcia, Constr. Build. Mater., 262, 12003 (2020).
4 K. Ostrowski, D. Stefaniuk, L. Sadowski, K. Krzywinski, M. Gicala and M. Rozanska, Constr. Build. Mater., 238, 117794 (2020).   DOI
5 Y. B. Guo, G. F. Gao, L. Jing and V. P. W. Shim, Int. J. Impact Eng., 156, 103955 (2021).   DOI
6 X. C. Kang and G. X. Zhang, Water Power, 37, 55 (2011).
7 J. Z. Cen, R. H. Zhu, C. Y. Jiang, W. B. Shi and S. Li, Chem. Eng. Des. Commun., 47, 188 (2021).
8 H. Binici, Y. Yardim, O. Aksogan, R. Resatoglu, A. Dincer and A. Karrpuz, SM&T., 23, e00145 (2020).
9 J. K. Chang and K. Zhang, Highway, 65, 194 (2020).
10 China Academy of Building Research. Beijing Construction Engineering Group Co. LTD. China General Research Institute of Building Materials Science. Chongqing Institute of Architectural Science. Liaoning Institute of Building Science. Specification for mix proportion design of ordinary concrete.Industry Standard Construction industry. Retrieved April 22, 2011 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000006228395&DbName=SCSD.
11 K. L. Scrivener, A. K. Crumbie and P. Laugesen, Interface Sci., 12, 411 (2004).   DOI
12 B. B. Xu, Z. W. Ou, W. Luo, N. Liu, W. Yuan and L. P. Fu, Mater. Rep., 34, 22065 (2020).
13 W. Shao, L. Jiang and H. Zhou, Value Eng., 33, 136 (2014).
14 X. Xie, Q. Feng, Z. Chen, L. Jiang and W. Lu, Constr. Build. Mater., 218, 119 (2019).   DOI
15 T. Gehlot, S. S. Sankhla and S. Parihar, Materials Today: Proceedings On the web. Retrieved March 21, 2022 from https://doi.org/10.1016/j.matpr.2021.01.789.   DOI
16 J. Gortz, A. Zafar, S. Wieprecht and K. Terheiden, Constr. Build. Mater., 307, 124783 (2021).   DOI
17 J. Ren, X. Luo, R. Bai, C. Pan and J. Zhang, J. Build. Eng., 46, 103784 (2022).   DOI
18 P. Shen, L. Lu, F. Wang, Y. He, S. Hu, J. Lu and H. Zheng, Cem. Concr. Compos., 106, 103456 (2020).   DOI
19 D. Zou, K. Li, W. Li, H. Li and T. Cao, Constr. Build. Mater., 163, 949 (2018).   DOI
20 R. Li, Thesis (in China), p. 30-31, Ningxia University, Ningxia (2015).
21 V. Cerny, M. Kocianova and R. Drochytka, Procedia Eng., 195, 9 (2017).   DOI
22 J. X. Lu, P. L. Shen, H. A. Ali and C. S. Poon, Cem. Concr. Compos., 124, 104277 (2021).   DOI
23 H. Liu, C. Liu, G. Bai and C. Zhu, Constr. Build. Mater., 259, 120397 (2020).   DOI
24 G. Q. Xiong, C. Wang; S. Zhou, X. L. Jia, W. Luo, J. W. Liu and X. Peng, Constr. Build. Mater., 229, 116936 (2019).   DOI
25 J. N. Sun, K. H. Kong, C. Q. Lye and S. T. Quek, Constr. Build. Mater., 315, 125365 (2022).   DOI
26 J. W. Bao, Q. F. Ren, L. Sun, Y. Ding and W.-C. Oh, Korean J. Mater. Res., 31, 195 (2021).   DOI
27 J. Hu and P. Stroeven, Interface Sci., 12, 389 (2004).   DOI
28 A. Alaskar, M. Alshannag and M. Higazey, Constr. Build. Mater., 288, 122998 (2021).   DOI
29 P. Shen, J.-X. Lu, L. Lu, Y. He, F. Wang and S. Hu, Constr. Build. Mater., 312, 125373 (2021).   DOI
30 Z. Li, J. Liu, J. Xiao and P. Zhong, Cem. Concr. Compos., 108, 103444 (2020).   DOI
31 Q. Q. Ma, P. Chen, X. P. Zou and R. J. Liu, Cem. Eng., 5, 89 (2013).
32 S. Jiang, L. Shen and W. Li, Constr. Build. Mater., 303, 124443 (2021).   DOI
33 I. Yoshitake, S. Ueno, Y. Ushio, H. Arano and S. Fukumoto, Constr. Build. Mater., 112, 440 (2016).   DOI
34 W. Zhao, Railway Invest. Surveying, 35, 60 (2009).
35 Q. Li, H. Ding, F. M. Kong and W. Zhang., Architecture Technol., 50, 967 (2019).
36 G. W. Li, Des. Hydroelectric Power Station, 17, 77 (2001).
37 General Administration of Quality Supervision. Sand for building. China Sand and Stone Association. Inspection and Quarantine of the People's Republic of China. Retrieved July13, 2001 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF00023064&DbName=SCSF.
38 Industry Standard - Construction industry. Technical specification for lightweight aggregate concrete. Retrieved January 1, 2002 from https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000001060769&DbName=SCSD.
39 M. A. Nawaz, B. Ali, L.A. Qureshi, H. M. U. Aslam, I. Hussain, B. Masood and S. S. Raza, Case Stud. Constr. Mater., 13, e00407 (2020).   DOI
40 B. Ali, M.A. Gulzar and A. Raza, Constr. Build. Mater., 277, 122329 (2021).   DOI
41 M. Kuroda, T. Watanabe and N. Terashi, Cem. Concr. Res., 30, 253 (2000).   DOI
42 A. E. Klausen, T. Kanstad, O. Bjontegaard and E. J. Sellevold, Cem. Concr. Compos., 109, 103574 (2020).   DOI
43 C. Q. Wang, H. L. Gao and J. Y. Tian, Concrete, 11, 1 (2018).