DOI QR코드

DOI QR Code

Air sterilization using filter and air ions: A review

필터와 이온을 이용한 공기살균법 연구동향

  • Woo, Chang Gyu (Department of Eco-Machinery Systems, Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Kim, Hak-Joon (Department of Eco-Machinery Systems, Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Kim, Yong-Jin (Department of Eco-Machinery Systems, Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials) ;
  • Han, Bangwoo (Department of Eco-Machinery Systems, Environmental and Energy Systems Research Division, Korea Institute of Machinery & Materials)
  • 우창규 (한국기계연구원 환경에너지기계연구본부 환경기계시스템연구실) ;
  • 김학준 (한국기계연구원 환경에너지기계연구본부 환경기계시스템연구실) ;
  • 김용진 (한국기계연구원 환경에너지기계연구본부 환경기계시스템연구실) ;
  • 한방우 (한국기계연구원 환경에너지기계연구본부 환경기계시스템연구실)
  • Received : 2016.06.16
  • Accepted : 2016.09.30
  • Published : 2016.09.30

Abstract

Bioaerosol inactivation becomes important as people recognize the significance on the health effects of bioaerosols. There are several ways to inactivate such bioaerosols such as antimicrobial filters, UV, etc. For the on-filter-inactivation, proper antimicrobial materials coating should be applied. Recently, air ions are adopted to effectively reduce germ and virus activity. Limitations arise when each method is applied separately. Coating materials can experience chemical instability over time and temperature. Ionizers can generate ozone to prepare high ion concentrations. Combinations of developed techniques to enhance the inactivation efficiency were suggested. Researches on the air sterilization are reviewed and outlook is highlighted. Proper techniques such as combinations of filter material coating and air ion generation can be used to make air quality better for human living.

Keywords

References

  1. Chang, C.-W., Li, S.-Y., Huang, S.-H., Huang, C.-K., Chen, Y.-Y. and Chen, C.-C. (2013), Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities. Indoor Air, 23: 74?84 https://doi.org/10.1111/j.1600-0668.2012.00793.x
  2. Chong, E.-s., Hwang, G. B., Nho, C. W., Kwon, B. M., Lee, J. E., Seo, S., Bae, G.-N., Jung, J. H. (2013). Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles. Science of The Total Environment 444:110-114. https://doi.org/10.1016/j.scitotenv.2012.11.075
  3. Cowling, B. J., Park, M., Fang, V. J., Wu, P., Leung, G. M., Wu, J. T. (2015). Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May-June 2015. Euro surveillance : European communicable disease bulletin 20:21163.
  4. Douwes, J., Thorne, P., Pearce, N., Heederik, D. (2003). Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Annals of Occupational Hygiene 47:187-200.
  5. Gaunt, L. F., Higgins, S. C., Hughes, J. F. (2005). Interaction of air ions and bactericidal vapours to control micro-organisms. Journal of Applied Microbiology 99:1324-1329. https://doi.org/10.1111/j.1365-2672.2005.02729.x
  6. Han, B., Kang, J.-S., Kim, H.-J., Woo, C.-G., Kim, Y.-J. (2015). Investigation of Antimicrobial Activity of Grapefruit Seed Extract and Its Application to Air Filters with Comparison to Propolis and Shiitake. Aerosol and Air Quality Research 15:1035-1044. https://doi.org/10.4209/aaqr.2014.09.0208
  7. Hwang, G. B., Lee, J. E., Nho, C. W., Lee, B. U., Lee, S. J., Jung, J. H., Bae, G.-N. (2012). Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles. Science of The Total Environment 421-422:273-279. https://doi.org/10.1016/j.scitotenv.2012.01.060
  8. Hwang, G. B., Heo, K. J., Yun, J. H., Lee, J. E., Lee, H. J., Nho, C. W., Bae, G.-N., Jung, J. H. (2015a). Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles. PLoS ONE 10:e0126481. https://doi.org/10.1371/journal.pone.0126481
  9. Hwang, G. B., Sim, K. M., Bae, G.-N., Jung, J. H. (2015b). Synthesis of hybrid carbon nanotube structures coated with Sophora flavescens nanoparticles and their application to antimicrobial air filtration. Journal of Aerosol Science 86:44-54. https://doi.org/10.1016/j.jaerosci.2015.04.004
  10. Joe, Y. H. and Hwang, W. J. J. H. P. Y. H. Y. J. (2013). Correlation between the Antibacterial Ability of Silver Nanoparticle Coated Air Filters and the Dust Loading. Aerosol and Air Quality Research 13:1009-1018. https://doi.org/10.4209/aaqr.2012.07.0191
  11. Joe, Y. H., Park, D. H., Hwang, J. (2016). Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading. Journal of Hazardous Materials 301:547-553. https://doi.org/10.1016/j.jhazmat.2015.09.017
  12. Jung, J. H., Hwang, G. B., Lee, J. E., Bae, G. N. (2011a). Preparation of Airborne Ag/CNT Hybrid Nanoparticles Using an Aerosol Process and Their Application to Antimicrobial Air Filtration. Langmuir 27:10256-10264. https://doi.org/10.1021/la201851r
  13. Jung, J. H., Hwang, G. B., Park, S. Y., Lee, J. E., Nho, C. W., Lee, B. U., Bae, G.-N. (2011b). Antimicrobial Air Filtration Using Airborne Sophora Flavescens Natural-Product Nanoparticles. Aerosol Science and Technology 45:1510-1518. https://doi.org/10.1080/02786826.2011.602763
  14. Jung, J. H., Lee, J. E., Bae, G.-N. (2013). Use of electrosprayed Sophora flavescens natural-product nanoparticles for antimicrobial air filtration. Journal of Aerosol Science 57:185-193. https://doi.org/10.1016/j.jaerosci.2012.09.004
  15. Kim, J.-Y., Kim, H. H., Cho, K.-H. (2013). Acute Cardiovascular Toxicity of Sterilizers, PHMG, and PGH: Severe Inflammation in Human Cells and Heart Failure in Zebrafish. Cardiovascular Toxicology 13:148-160. https://doi.org/10.1007/s12012-012-9193-8
  16. Kim, Y. S., Yoon, K. Y., Park, J. H., Hwang, J. (2011). Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria. Science of The Total Environment 409:748-755. https://doi.org/10.1016/j.scitotenv.2010.11.012
  17. Ko, Y.-S., Joe, Y. H., Seo, M., Lim, K., Hwang, J., Woo, K. (2014). Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. Journal of Materials Chemistry B 2:6714-6722.
  18. Lee, D. H., Jung, J. H., Lee, B. U. (2013). Effect of Treatment with a natural extract of Mukdenia rossii (Oliv) Koidz and unipolar ion emission on the antibacterial performance of air filters. Aerosol and Air Quality Research 13:771-776. https://doi.org/10.4209/aaqr.2012.08.0211
  19. Lee, S.-G., Hyun, J., Hwa Lee, S., Hwang, J. (2014). One-pass antibacterial efficacy of bipolar air ions against aerosolized Staphylococcus epidermidis in a duct flow. Journal of Aerosol Science 69:71-81. https://doi.org/10.1016/j.jaerosci.2013.12.005
  20. Liang, Y., Wu, Y., Sun, K., Chen, Q., Shen, F., Zhang, J., Yao, M., Zhu, T., Fang, J. (2012). Rapid Inactivation of Biological Species in the Air using Atmospheric Pressure Nonthermal Plasma. Environmental Science & Technology 46:3360-3368. https://doi.org/10.1021/es203770q
  21. Liew, T. P. and Conder, J. R. (1985). Fine mist filtration by wet filters-I. Liquid saturation and flow resistance of fibrous filters. Journal of Aerosol Science 16:497-509. https://doi.org/10.1016/0021-8502(85)90002-3
  22. Mendis, D. A., Rosenberg, M., Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. Plasma Science, IEEE Transactions on 28:1304-1306. https://doi.org/10.1109/27.893321
  23. Miaskiewicz-Peska, E. and Lebkowska, M. (2011). Effect of Antimicrobial Air Filter Treatment on Bacterial Survival. Fibers & Textiles in Eastern Europe 19:73-77.
  24. Noyce, J. O. and Hughes, J. F. (2002). Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. Journal of Electrostatics 54:179-187. https://doi.org/10.1016/S0304-3886(01)00179-6
  25. Noyce, J. O. and Hughes, J. F. (2003). Bactericidal effects of negative and positive ions generated in nitrogen on starved Pseudomonas veronii. Journal of Electrostatics 57:49-58. https://doi.org/10.1016/S0304-3886(02)00110-9
  26. Park, J.-H., Yoon, K.-Y., Kim, Y.-S., Byeon, J. H., Hwang, J. (2009). Removal of submicron aerosol particles and bioaerosols using carbon fiber ionizer assisted fibrous medium filter media. J Mech Sci Technol 23:1846-1851. https://doi.org/10.1007/s12206-009-0613-z
  27. Pigeot-Remy, S., Lazzaroni, J. C., Simonet, F., Petinga, P., Vallet, C., Petit, P., Vialle, P. J., Guillard, C. (2014). Survival of bioaerosols in HVAC system photocatalytic filters, Appl. Catal. B: Environ., 144:654-664. https://doi.org/10.1016/j.apcatb.2013.07.036
  28. Pyankov, O. V., Usachev, E. V., Pyankova, O., Agranovski, I. E. (2012). Inactivation of Airborne Influenza Virus by Tea Tree and Eucalyptus Oils. Aerosol Science and Technology 46:1295-1302. https://doi.org/10.1080/02786826.2012.708948
  29. Sim, K. M., Lee, H. J., Nho, C. W., Bae, G.-N., Jung, J. H. (2014). Effects of Surrounding Temperature on Antimicrobial Air Filters Coated with Sophora flavescens Nanoparticles. Aerosol Science and Technology 48:324-332. https://doi.org/10.1080/02786826.2013.870660
  30. Sim, K. M., Park, H.-S., Bae, G.-N., Jung, J. H. (2015). Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop. Science of The Total Environment 533:266-274. https://doi.org/10.1016/j.scitotenv.2015.07.003
  31. Tyagi, A. K., Nirala, B. K., Malik, A., Singh, K. (2008). The effect of negative air ion exposure on Escherichia coli and Pseudomonas fluorescens. Journal of Environmental Science and Health, Part A 43:694-699. https://doi.org/10.1080/10934520801959831
  32. Tyagi, A. K. and Malik, A. (2010). Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens. International Journal of Food Microbiology 143:205-210. https://doi.org/10.1016/j.ijfoodmicro.2010.08.023
  33. Tyagi, A. K. and Malik, A. (2012). Bactericidal action of lemon grass oil vapors and negative air ions. Innovative Food Science & Emerging Technologies 13:169-177. https://doi.org/10.1016/j.ifset.2011.09.007
  34. Woo, C. G., Kang, J.-S., Kim, H.-J., Kim, Y.-J., Han, B. (2015). Treatment of Air Filters Using the Antimicrobial Natural Products Propolis and Grapefruit Seed Extract for Deactivation of Bioaerosols. Aerosol Science and Technology 49:611-619. https://doi.org/10.1080/02786826.2015.1054983
  35. Yoon, K. Y., Byeon, J. H., Park, C. W., Hwang, J. (2008). Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers. Environmental Science & Technology 42:1251-1255. https://doi.org/10.1021/es0720199
  36. Zhong, Z., Xu, Z., Sheng, T., Yao, J., Xing, W., Wang, Y. (2015). Unusual Air Filters with Ultrahigh Efficiency and Antibacterial Functionality Enabled by ZnO Nanorods. ACS Applied Materials & Interfaces 7:21538-21544. https://doi.org/10.1021/acsami.5b06810