Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.6.425

Interatomic Potential Models for Ionic Systems - An Overview  

Lee, Byeong-Joo (Department of Materials Science and Engineering, Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH))
Lee, Kwang-Ryeol (Computational Science Center, Korea Institute of Science and Technology)
Publication Information
Korean Journal of Metals and Materials / v.49, no.6, 2011 , pp. 425-439 More about this Journal
Abstract
A review of the development history of interatomic potential models for ionic materials was carried out paying attention to the way of future development of an interatomic potential model that can cover ionic, covalent and metallic bonding materials simultaneously. Earlier pair potential models based on fixed point charges with and without considering the electronic polarization effect were found to satisfactorily describe the fundamental physical properties of crystalline oxides (Ti oxides, $SiO_2$, for example) and their polymorphs, However, pair potential models are limited in dealing with pure elements such as Ti or Si. Another limitation of the fixed point charge model is that it cannot describe the charge variation on individual atoms depending on the local atomic environment. Those limitations lead to the development of many-body potential models(EAM or Tersoff), a charge equilibration (Qeq) model, and a combination of a many-body potential model and the Qeq model. EAM+Qeq can be applied to metal oxides, while Tersoff+Qeq can be applied to Si oxides. As a means to describe reactions between Si oxides and metallic elements, the combination of 2NN MEAM that can describe both covalent and metallic elements and the Qeq model is proposed.
Keywords
interatomic potential; ionic bond; covalent bond; metallic bond; atomistic simulation;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).   DOI
2 L. V. Woodcock, Chem. Phys. Lett. 10, 257 (1971).   DOI   ScienceOn
3 A. Rahman, R. H. Fowler, and A. H. Narten, J. Chem. Phys. 57, 3010 (1972).   DOI
4 L. V. Woodcock, Advances in Molten Salts Chemistry, Vol. 3 Chap. 1, pp.1-75, Plenum, New York (1975).
5 L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976).   DOI
6 B. P. Feuston and S. H. Garofalini, J. Chem. Phys. 89, 5818 (1988).   DOI
7 S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev. Lett. 61, 869 (1988).   DOI   ScienceOn
8 B.W.H. van Beest, G.J. Kramer, and R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).   DOI   ScienceOn
9 C. R. A. Catlow and A.M. Stoneham, J. Phys. C: Solid State Phys. 16, 4321 (1983).   DOI   ScienceOn
10 J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953).   DOI
11 Z. Jiang and R. A. Brown, Chem. Engin. Sci. 49, 2991 (1994).   DOI   ScienceOn
12 R. Soulairol and F. Cleri, Solid State Sciences 12, 163 (2010).   DOI   ScienceOn
13 B .G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).   DOI
14 G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, Phys. Rev. B 11, 3060 (1975).   DOI
15 G. V. Lewis and C. R. A. Catlow, J. Phys. C: Solid State Phys. 18, 1149-1161 (1985).   DOI   ScienceOn
16 P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsj, Phys. Rev. B 41, 12197 (1990).   DOI   ScienceOn
17 P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 (2002).   DOI   ScienceOn
18 D. Herzbach, K. Binder, and M.H. Mser, J. Chem. Phys. 123, 124711 (2005).   DOI   ScienceOn
19 J. D. Gale and A.L. Rohl, Mol. Simul. 29, 291 (2003).   DOI   ScienceOn
20 J. H. Rose, F. Ferrante, and J. R. Smith, Phys. Rev. Lett. 47, 675 (1981).   DOI
21 J. R. Smith, F. Ferrante, and J. H. Rose, Phys. Rev. B 25, 1419 (1982).   DOI
22 J. H. Rose, F. Ferrante, and J. R. Smith, Phys. Rev. B 28, 1835 (1983).   DOI
23 J. H. Rose, J. R. Smith, F. Guinea, and F. Ferrante, Phys. Rev. B 29, 2963 (1984).   DOI
24 J. Tersoff, Phys. Rev. Lett. 56, 632 (1986)   DOI   ScienceOn
25 J. Tersoff, Phys. Rev. B 37, 6991 (1988).   DOI   ScienceOn
26 J. Tersoff, Phys. Rev. B 38, 9902 (1988).   DOI   ScienceOn
27 J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).   DOI   ScienceOn
28 M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).   DOI
29 J. Tersoff, Phys. Rev. B 39, 5566 (1989).   DOI   ScienceOn
30 M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).   DOI
31 S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).   DOI   ScienceOn
32 M. I. Baskes, J. S. Nelson, and A. F. Wright, Phys. Rev. B 40, 6085 (1989).   DOI   ScienceOn
33 M. I. Baskes, Phys. Rev. B 46, 2727 (1992).   DOI   ScienceOn
34 M. I. Baskes and R. A. Johnson, Modelling Simul. Mater. Sci. Eng. 2, 147 (1994).   DOI   ScienceOn
35 M. I. Baskes, Mater. Chem. Phys. 50, 152 (1997).   DOI   ScienceOn
36 B.-J. Lee and M. I. Baskes, Phys. Rev. B 62, 8564 (2000).
37 B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Phys. Rev. B 64, 184102 (2001).
38 H.-K. Kim, W.-S. Jung, and B.-J. Lee, J. Mater. Res. 25, 1288 (2010).   DOI   ScienceOn
39 B.-J. Lee, J. Phase Equilib. Diff. 30, 509 (2009).   DOI   ScienceOn
40 B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, CALPHAD 34, 510 (2010).   DOI   ScienceOn
41 F. H. Stillinger and A. Weber, Phys. Rev. B 31, 5262 (1985).   DOI   ScienceOn
42 S.R. Billeter, A. Curioni, D. Fischer and W. Andreoni, Phys. Rev. B 73, 155329 (2006).
43 T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and I. Ohdomari, Jpn. J. Appl. Phys. 38, L366 (1999).   DOI
44 T. Watanabe, D. Yamasaki, K. Tatsumura, and I. Ohdomari, Appl. Surf. Sci. 234, 207 (2004).   DOI   ScienceOn
45 Y. Umeno, T. Kitamura, K. Date, M. Hayashi, and T. Iwasaki, Comput. Mater. Sci. 25, 447 (2002).   DOI   ScienceOn
46 M. I. Baskes, "Modified Embedded Atom Method Calculations of Interfaces," Report number: SAND--96-8484C, Sandia National Laboratories, Livermore, (1996).
47 C.-L. Kuo and P. Clancy, Modelling Simul. Mater. Sci. Eng. 13, 1309 (2005).   DOI   ScienceOn
48 A. K. Rappe and W. A. Goddard III, J. Phys. Chem. 95, 3358 (1991).   DOI
49 R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).   DOI
50 R. T. Sanderson, Science 11, 207 (1955).
51 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960).
52 R. P. Iczkowsky and J. L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961).   DOI
53 R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).   DOI
54 P. Politzer and H. Weinstein, J. Chem. Phys. 71, 4218 (1979).   DOI
55 R. G. Parr and R. G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983).   DOI
56 W. J. Mortier, K. van Genechten, and J. Gasteiger, J. Am. Chem. Soc. 107, 829 (1985).   DOI
57 F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11996 (1994).   DOI   ScienceOn
58 W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986).   DOI
59 E. Demiralp, T. Cagin, and W.A. Goddard, Phys. Rev. Lett. 82, 1708 (1999).   DOI   ScienceOn
60 V. Swamy and J. D. Gale, Phys. Rev. B 62, 5406 (2000).   DOI   ScienceOn
61 T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. 82, 4866 (1999).   DOI
62 T. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 71, 205413 (2005).
63 N. Rosen, Phys. Rev. 38, 255 (1931).   DOI
64 C. C. J. Roothaan, J. Chem. Phys. 19, 1445 (1951).   DOI
65 S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London Ser. A 373, 27 (1980).   DOI
66 E. R. Smith, Proc. R. Soc. London Ser. A 375, 475 (1981).   DOI
67 D. E. Parry, Surf. Sci. 49, 433 (1975).   DOI   ScienceOn
68 J. Hautman and M. L. Klein, Mol. Phys. 75, 379 (1992).   DOI   ScienceOn
69 D. M. Heyes, Surf. Sci. Lett. 293, L857 (1993).
70 X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. N. Neurock, Phys. Rev. B 69, 035402 (2004).
71 X. W. Zhou and H. N. G. Wadley, J. Phys.: Condens. Matter 17, 3619 (2005).   DOI   ScienceOn
72 R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, (1981).
73 J. R. Smith, H. Schlosser, W. Leaf, J. Ferrante, and J. H. Rose, Phys. Rev. A 39, 514 (1989).   DOI   ScienceOn
74 J. Ferrante, H. Schlosser, and J. H. Rose, Phys. Rev. A 43, 3487 (1991).   DOI   ScienceOn
75 I. Lazic, M. Ernst, and B. Thijsse, "Atomistic Simulation Methods for Studying Self Healing Mechanisms in $Al/Al_2O_3$," Proceedings of the First International Conference on Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands, (2007).
76 A. Yasukawa, JSME Int. J., Ser. A 39, 313 (1996).
77 T. Iwasaki and H. Miura, J. Mater. Res. 16, 1789 (2001).   DOI   ScienceOn
78 A. Yasukawa, in Japan Society of Mechanical Engineers, p.71, Sept. 19, Hitachi City, Ibaraki, Japan, (2003).
79 A. Yasukawa, J. Solid Mech. Mater. Engin. 4, 599 (2010).   DOI
80 J. Yu, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 75, 085311 (2007)
81 T.-R. Shan, B. D. Devine, M. Hawkins, A. Asthagiri, S. R. Phillpot, and S. B. Sinnott, Phys. Rev. B 82, 235302 (2010).
82 D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).   DOI   ScienceOn
83 T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 81, 125328 (2010).
84 B. D. Devine, T.-R. Shan, S. B. Sinnott, and S. R. Phillpot, "Charge Optimized Many-Body Potential for the Copper/Copper Oxide System," (2011) unpublished.
85 S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).   DOI   ScienceOn
86 A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, "ReaxFF: A Reactive Force Field for Hydrocarbons," J. Phys. Chem. A 105, 9396 (2001).   DOI   ScienceOn
87 A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard III, J. Phys. Chem. A 107, 3803 (2003).   DOI   ScienceOn
88 D. W. Brenner, Phys. Rev. B 42, 9458 (1990).   DOI   ScienceOn
89 D. W Brenner, O. A Shenderova, J. A Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).   DOI   ScienceOn