• Title/Summary/Keyword: bulk material

Search Result 1,006, Processing Time 0.025 seconds

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Application of Bulk Talc to Molding Material (주형재료로서 덩어리 활석의 이용)

  • Ha, Man-Jin;Lee, Zin-Hyoung;Lee, Sang-Soo;Eun, Hee-Joon
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 1994
  • The possibility of using bulk talc as molding material was reviewed and tested with the measurement of thermal properties and computer simulations. The measured thermal conductivity and heat diffusivity($k{\rho}c$) of talc were $2.4W/m^{\circ}C$ and $6.6{\times}10^6J^2/m^4^{\circ}C^2s$, respectively. Thermal properties of talc could be ranked between those of sand mold and iron mold. Talc transforms into cristobalite and enstatite at $910^{\circ}C$, During the transformation volume and structure change, cracks appear on the surface and distortion occurs. Therefore talc can be used for molding material below $910^{\circ}C$ if carefully treated. Computer simulation was carried out to test whether talc insert could promote directional solidification in sand mold and iron mold. In sand mold, it was possible to achieve directional solidification of thin plate casting with the length to thickness ratio of 15, if both iron insert and talc insert were used. In iron mold, it was possible to achieve directional solidification only with talc insert.

  • PDF

The Strength of Sintered Body with the Composition and the Forming Process of LTCC Materials (LTCC 소재의 조성과 성형 공정에 따른 소결체의 강도 특성)

  • Gu, Sin Il;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • According to the composition of LTCC material, though it was thought that bulk defect which was made in forming process effects on the densification during the sintering, it was not reported systemically. In this study, we evaluated crystal structure, 3 point bending strength, hardness and microstructure of the samples by uniaxial pressing and tape casting using the commercial powders of the crystallizing glass and the glass/ceramic composite. In the case of glass/ceramic composite, Viox-001 powder with residual glass in the sintering, 3 point bending strength was similar regardless of forming process due to fill the bulk defect by residual glass. In the case of crystallizing glass, MLS-22, because glass phase was small in the sintering, glass did not fill the pore in the sample by uniaxial pressing process, therefore, the 3 point bending strength of it was 167 MPa. However, the 3 point bending strength of the sample by tape casting was 352 MPa and much higher. Meanwhile, crystal structure and hardness were similar regardless of forming process.

Study on the Blocking Voltage and Leakage Current Characteristic Degradation of the Thyristor due to the Surface Charge in Passivation Material (표면 전하에 의한 Thyristor 소자의 차단전압 및 누설전류특성 연구)

  • Kim Hyoung-Woo;Seo Kil-Soo;Bahng Wook;Kim Ki-Hyun;Kim Nam-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In high-voltage devices such as thyristor, beveling is mostly used junction termination method to reduce the surface electric field far below the bulk electric field and to expand the depletion region thus that breakdown occurs in the bulk of the device rather than at the surface. However, coating material used to protect the surface of the device contain so many charges which affect the electrical characteristics of the device. And device reliability is also affected by this charge. Therefore, it is needed to analyze the effect of surface charge on electrical characteristics of the device. In this paper, we analyzed the breakdown voltage and leakage current characteristics of the thyristor as a function of the amount of surface charge density. Two dimensional process simulator ATHENA and two-dimensional device simulator ATLAS is used to analyze the surface charge effects.

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency (ME 소자의 저주파 등가회로 모델링)

  • Chung, Su-Tae;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Optimal Design of Ultrasonic Horn for Ultrasonic Drilling Processing of Ceramic Material (세라믹 소재 초음파 드릴링 가공을 위한 초음파 Horn의 최적 설계에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, there has been continuous technological development in the semiconductor industry, and semiconductor manufacturing technologies are being advanced and highly integrated. For this reason, ceramic material having excellent heat resistance, wear resistance, and conductivity are used as components in semiconductor manufacturing. Among them, the probe card's space transformer is used as ceramic material to prevent electronic signal noise during the electrical die sorting of semiconductor function testing. However, implementing a bulk-type space transformer with a thickness of 5.6 mm or more is challenging, and thus it is produced in a structure with a stacked ceramic film. The stacked space transformer has low productivity because it is difficult to ensure hole clogging and a precise shape. In this research, an ultrasonic horn is designed to manufacture a bulk-type ceramic space transformer through ultrasonic drilling. Vibration characteristics were analyzed according to the ultrasonic horn, and the natural frequency was measured.

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses (인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Physical Properties of Rice Hull and Straw for the Handling Facilities

  • Oh, Jae H.;Kim, Myoung H.;Park, Seung J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.283-292
    • /
    • 1996
  • This study was performed to determine the physical properties of rice hull and straw which could be used for an optimum design and operation of the handling facilities for these rice crop by-products. The properties measured were kinetic friction coefficient , bulk density, and dynamic and static angle of repose. Rice hulls with moisture content of 13% and 21% were used throughout the test while rice straws of 10% and 16% moisture were chopped into 10mm length and used for the test. Friction coefficient was calculated from the horizontal traction forces measurement when a container holding the mass of rice hull and straw was pulled over mild steel. PVC, stainless steel, and galvanized steel surface by a universal testing machine. Bulk density was measured by an apparatus consisting of filling fundel and a receiving vessel. Dynamic angle of repose which is the angle at which the material will stand when piled was calculated from the photos of bulk samples after they were flowed by gravity and accumulated on a circular surface. Static angle of repose which is the angle between the horizontal and the sloping side of the material left in the container when discharging was also measured in the similar way. Results and conclusions from this study are summarized as follows . 1. Kinetic friction coefficient of both rice hull and straw were in the range of 0.26 -0.52 and increased with the moisture content. The magnitude of friction increased in the order of galvanized steel, stainless steel, PVC ,and mild steel. 2. Bulk densities of rice hull decreased while those of rice straw increased with moisture content increase . Average bulk densities of rice hull and straw were 96.8 and 74.7kg/㎥, respectively. 3. Average dynamic angle of repose for rice straw was 32.6$^{\circ}$ and those for 13% and 21% moisture rice hull were 38.9$^{\circ}$ and 44.9$^{\circ}$ , respectively. 4. Static angles of repose for both rice hull and straw showed increase with the moisture content. The values were 75.2\ulcorner and 80.2$^{\circ}$ for 13% and 21% moisture rice hull, respectively. Rice straws having 10% and 16% moisture content showed 87.3% and 89.2$^{\circ}$ static angle of repose, respectively.

  • PDF

Physical Properties of E-glass Fiber According to Fiberizing Temperature (섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성)

  • Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.