DOI QR코드

DOI QR Code

The Strength of Sintered Body with the Composition and the Forming Process of LTCC Materials

LTCC 소재의 조성과 성형 공정에 따른 소결체의 강도 특성

  • Gu, Sin Il (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo Soon (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong Hun (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
  • 구신일 (한국세라믹기술원 기초소재융합본부) ;
  • 신효순 (한국세라믹기술원 기초소재융합본부) ;
  • 여동훈 (한국세라믹기술원 기초소재융합본부) ;
  • 남산 (고려대학교 신소재공학과)
  • Received : 2012.11.07
  • Accepted : 2012.11.29
  • Published : 2013.01.01

Abstract

According to the composition of LTCC material, though it was thought that bulk defect which was made in forming process effects on the densification during the sintering, it was not reported systemically. In this study, we evaluated crystal structure, 3 point bending strength, hardness and microstructure of the samples by uniaxial pressing and tape casting using the commercial powders of the crystallizing glass and the glass/ceramic composite. In the case of glass/ceramic composite, Viox-001 powder with residual glass in the sintering, 3 point bending strength was similar regardless of forming process due to fill the bulk defect by residual glass. In the case of crystallizing glass, MLS-22, because glass phase was small in the sintering, glass did not fill the pore in the sample by uniaxial pressing process, therefore, the 3 point bending strength of it was 167 MPa. However, the 3 point bending strength of the sample by tape casting was 352 MPa and much higher. Meanwhile, crystal structure and hardness were similar regardless of forming process.

Keywords

References

  1. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, New York, 2005) p. 5.
  2. B. Schwartz, Am. Ceram. Soc. Bull., 63, 577 (1984).
  3. S. J. Hwang and J. H. Kim, Thermochi. Acta, 469, 104 (2006).
  4. X. Zhou, E. Li, S. Yang, B. Li, B. Tang, Y. Yuan, and S. Zhang, Ceram. Int., 38, 5551 (2012). https://doi.org/10.1016/j.ceramint.2012.03.072
  5. Y. J. Choi, J. H. Park, W. J. Ko, I. S. Hwang, J. H. Park, and J. G. Park, J. Am. Ceram. Soc., 89, 562 (2006). https://doi.org/10.1111/j.1551-2916.2005.00748.x
  6. W. Smetana, B. Balluch, G. Stangl, E. Gaubitzer, M. Edetsberger, and G. Kohler, Microelectron. Eng., 84, 1240 (2007). https://doi.org/10.1016/j.mee.2007.01.155
  7. E. Blond, N. Schmitt, F. Hild, Ph. Blumenfeld, and J. Poirier, J. Eur. Ceram. Soc., 25, 1819 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.06.004
  8. S. X. Dai, R. F. Huang, and D. L. Wilcox Sr., J. Am. Ceram. Soc., 85, 828 (2002).
  9. S. I. Gu, H. S. Shin, Y. W. Hong, D. H. Yeo, J. H. Kim, and S. Nahm, J. KIEEME, 23, 864 (2010).
  10. C. L. Lo, J. G. Duh, B. S. Chiou, and W. H. Lee, J. Am. Ceram. Soc., 85, 2230 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00440.x
  11. Z. H. Park, B. O. Park, S. I. Gu, H. S. Shin, D. H. Yeo, and J. H. Kim, J. Kor. Phys. Soc., 53, 2467 (2008). https://doi.org/10.3938/jkps.53.2467
  12. D. Chicot, D. Mercier, F. Roudet, K. Silva, M. H. Staia, and J. Lesage, J. Eur. Ceram. Soc., 27, 1905 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.06.011
  13. M. N. Rahaman, Ceramic Processing and Sintering, (Marcel Dekker Inc., New York, 1995) p. 97.