Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.7.515

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency  

Chung, Su-Tae (Department of Electronic Engineering, Pukyong National University)
Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.7, 2013 , pp. 515-521 More about this Journal
Abstract
Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.
Keywords
Magnetoelectric; Equivalent circuits; Maxwell-Wagner model; Debye absorption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Grossinger, Giap V. Duong, and R. Sato-Turtelli, J. Magn. Magn. Mater., 320, 1972 (2008).   DOI   ScienceOn
2 S. N. Babu, K. Srinivas, S. V. Suryanarayana, and T. Bhimasankaram, J. Phys. D: Appl. Phys., 41, 165407 (2008).   DOI   ScienceOn
3 C. M. Kanamadi, S. R. Kulkarni, B. K. Chougule, J. H. Jeong, B. C. Choi, and Y. S. Kang, J. Mater Sci; Mater Electron, 20, 632 (2009).   DOI   ScienceOn
4 R. Sun, B. Fang, X. Dong, and J. Liu, J. Mater Sci., 44, 5515 (2009).   DOI   ScienceOn
5 J. H. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram., 8, 107 (2002).   DOI   ScienceOn
6 V. M. Petrov, M. I. Bichurin, G. Srinivasan, J. Zhai, and D. Viehland, Solid State Communication, 142, 515 (2007).   DOI   ScienceOn
7 V. M. Laletin, V. M. Petrov, D. S. Tuskov, and G. Srinivasan, Tech. Phys. Lett., 34, 83 (2008).   DOI
8 Y. K. Fetisov, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, IEEE Sensor Journal., 6, 935 (2006).   DOI   ScienceOn
9 A. V. Hippel, Dielectric and Waves (Artech House Boston-London, 1995) p. 228.
10 Y. K. Park, S. M. Son, J. G. Ryu, and S. T. Chung, J. KIEEME, 23, 869 (2010).
11 G. V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Basques, J. Magn. Magn. Mater., 316, 390 (2004).
12 N. Singh, A. Agarwal, and S. Sanghi, Curr. Appl. Phys., 11, 783 (2011).   DOI   ScienceOn
13 D. Ravinder and K. Latha, Mater. Lett., 41, 247 (1999).   DOI   ScienceOn
14 M. V. Ramanaa, N. R. Reddt, G. Sreenivasulu, K. V. S. Kumar, B. S. Murty, and V.R.K. Murthy, Curr. Appl. Phys., 9, 1134 (2009).   DOI   ScienceOn
15 Y. J. Li, Solid State Communication, 137, 120 (2006).   DOI   ScienceOn
16 G. Catalan, Appl. Phys. Lett., 88, 102902 (2006).   DOI   ScienceOn
17 J. Zhou, Z. Qiu, and P. Liu, Mater. Res. Bull., 43, 3514 (2008).   DOI   ScienceOn
18 A. J. Moulson and J. M. Herbert, Electroceramics, Materials-Properties-Applications (Chapman and Hall, London-Newyork, 1990) p. 400.
19 A. Chelkowski, Dielectric Physics (Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1980) p. 97.