• 제목/요약/키워드: brain derived neurotrophic factor

검색결과 170건 처리시간 0.034초

고집적어레이 기반의 비교유전체보합법(CGH)을 통한 신경아세포종 Neuro2a 세포의 유전체이상 분석 (High Resolution Genomic Profile of Neuro2a Murine Neuroblastoma Cell Line by Array-based Comparative Genomic Hybridization)

  • 도진환;김인수;고현명;최동국
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.449-456
    • /
    • 2009
  • 신경아세포종은 미분화된 신경외배엽 세포로부터 유래한 신경능세포에 의해 형성된 소아기에 보는 가장 많이 발생하는 악성 종양 중 하나이다. 신경아세포종인 Neuro-2a 세포는 신경세포의 분화, 세포사 억제 효능, 세포독성 검정 등에 활용되고 있다. Neuro-2a 역시 다른 신경아세종과 같이 염색체 변이를 가지고 있지만, 이에 대해 고밀도의 게놈수준에서 염색체 변이에 대해 보고된 바가 없다. 본 연구에서는 고집적 마이크로어레이(최소 43,000 개의 코딩, non-코딩 유전자 서열이 집적된 마이크로어레이)기반의 비교유전체보합법을 활용하여, 고해상도의 Neuro-2a 유전체 이상을 분석하였다. 마이크로 어레이 데이터는 Hidden Markov Model을 활용하여, 유전체 변이를 double loss, single loss, normal, single gain 그리고 amplification으로 나누어 분석하였다. Neuro2a는 MYCN 유전자의 증폭은 관찰되지 않았고, GDNF, BDNF, NENF등의 neurotrophic factor 가운데 NENF의 gain 현상이 관찰 되었다. 염색체의 이상은 4,8,10,11,15번에서 발견되었으며, 염색체 3,17,18,19에서는 전부 20개 미만의 염색체 이상이 발견되었다. 염색체 이상이 연속적으로 일어난 부위 중 gain으로서 가장 긴 부분은 Chr8:8,427,841-35,162,415의 약 26.7 Mb이며, single loss로서 가장 긴 곳은 Chr4:73,265,785-88,374,165의 약 15.1 Mb였다. 염색체의 위치는 UCSC 데이터베이스 (UCSC mm8, NCBI Build 36)에 근거하였다.

Lactobacillus plantarum C29 Alleviates TNBS-Induced Memory Impairment in Mice

  • Lee, Hae-Ji;Jeong, Jin-Ju;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.175-179
    • /
    • 2018
  • In a preliminary study, Lactobacillus plantarum C29 was found to suppress 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in mice. Therefore, to understand whether an anti-colitic probiotic C29 could attenuate memory impairment, we examined the effects of C29 on TNBS-induced memory impairment in mice. Orally administered Lactobacillus plantarum C29 attenuated TNBS-induced memory impairment in mice in the Y-maze, noble object, and passive avoidance task tests. C29 treatment increased TNBS-suppressed hippocampal brain-derived neurotrophic factor expression and inhibited TNBS-induced hippocampal NF-${\kappa}B$ activation and blood LPS levels. Moreover, C29 restored the TNBS-disturbed gut microbiota composition. These findings suggest that C29 can alleviate memory impairment presumably by restoring the gut microbiota composition.

BDNF Promotes Neurite Growth and Survival of Antennal Lobe Neurons from the Silk Moth Bombyx mori in vitro

  • Kim, Jin-Hee;Sung, Dong-Kyung;Park, Chan-Woo;Kim, Kang-Min;Park, Hun-Hee;Kim, Hak-Ryul;Lee, Bong-Hee
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.99-99
    • /
    • 2003
  • Brain-derived neurotrophic factor (BDNF) induced a significant neurite extension of antennal lobe (AL) neurons from the silk moth Bombyx mori in culture on lamini/ concanavalin A-coated dishes, in comparison with smaller effect of 20-hydroxyecdy-sone (20-HE). But the effect fur neurite extension by 5-hydroxytryptamine (5-HT) could not be found. A significant increase in the number of new primary branches from the principal neurites of AL neurons was also shown in culture with BDNF and 5-HT, but not with 20-HE. (omitted)

  • PDF

인간 신경아세포종 세포 배양을 통한 뇌 신경세포 생육 촉진인자의 생산

  • 홍종수;우광회;.박경유;이현용
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.102-105
    • /
    • 1997
  • In cultivating human neuroblastoma cells maximum number of neurites per cell and length of the neurite were estimated as 5.5 and 2.2 (nm), respectively It was found that there was correlation between growth and differentiation of nerve cells. Maximum specific BDNF production rate was also calculated as 2.5$\times $10$^{-5}$(ng/cell/day) at 7$\times $ 10$^{5}$ (viable cells/ml) of maximum cell density, corresponding to 100 (ng/mL) of BDNF. The secretion of BDNF was occurred most in the later peroids of the cultivation, yielding 75 (ng/mL) of BDNF. The production of rate of BDNF was elongated in adding 1 ($\mu $g/mL) of BDNF as well as 40% increase of the length of the BDNF. It proves that BDNF can be used as one of biopharmaceuticals to treat age-related diseases such as Alzheimer's disease and Prakinson's disease. It can also provide the information of scaling-up mammalian cell cuture system to economically produce BDNF.

  • PDF

Job Stress and Neuropeptide Response Contributing to Food Intake Regulation

  • Kim, Ki-Woong;Won, Yong Lim;Ko, Kyung Sun;Kang, Seong-Kyu
    • Toxicological Research
    • /
    • 제31권4호
    • /
    • pp.415-420
    • /
    • 2015
  • The purpose of the present study is to investigate the correlations between food intake behavior and job stress level and neuropeptide hormone concentrations. Job strain and food intake behavior were first identified using a self-reported questionnaire, concentrations of neuropeptide hormones (adiponectin, brain derived neurotrophic factor [BDNF], leptin, and ghrelin) were determined, and the correlations were analyzed. In the results, job strain showed significant correlations with adiponectin (odds ratio [OR], 1.220; 95% confidence interval [CI], 1.001~1.498; p < 0.05) and BDNF (OR, 0.793; 95% CI, 0.646~0.974; p < 0.05), and ghrelin exhibited a significant correlation with food intake score (OR, 0.911; 95% CI, 0.842~0.985, p < 0.05). These results suggest that job stress affects food intake regulation by altering the physiological concentrations of neuropeptide hormones as well as emotional status.

자살 : 유전자-환경 상호작용 (Suicide : Gene-Environment Interaction)

  • 김용구
    • 생물정신의학
    • /
    • 제17권2호
    • /
    • pp.65-69
    • /
    • 2010
  • Gene-environment interactions are important in pathogenesis of suicide or suicidal behavior. Twin and adoption studies and family studies show that genetic factors play a critical role in suicide or suicidal behavior. Given the strong association between serotonergic neurotransmission and suicide, recent molecular genetic studies have focused on polymorphisms of serotonin genes, especially on serotonin transporter and tryptophan hydroxylase genes. Some studies have revealed a significant interaction between s allele of the serotonin transporter gene and the risk of suicide attempt associated with childhood trauma. In addition, the polymorphism of brain-derived neurotrophic factor gene also may influence the effect of childhood trauma in relation to the risk of attempting suicide. Future studies should explore genetic and environmental factors in suicide or suicidal behavior and examine for gene and environment interaction.

Effects of Acupuncture at GB30, GB34, and BL40 on Functional Recovery after Sciatic Crushed Nerve Injury in Rats

  • Lee, Moon-Kyu;Song, Yun-Kyung;Lim, Hyung-Ho
    • 대한한의학회지
    • /
    • 제31권3호
    • /
    • pp.66-78
    • /
    • 2010
  • Background: Peripheral nerve injuries are a commonly-encountered clinical problem and often result in a chronic pain and severe functional deficits. Objectives: The aim of this study was to evaluate the effects of acupuncture on the descending pain and the recovery of the locomotor function that follows sciatic crushed nerve injury in rats. Method: In order to assess the effects of acupuncture on the descending pain and functional recovery, we investigated the walking track analysis, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) expression in the sciatic nerve, and on the expressions of c-Fos and nitric oxide synthase in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral periaqueductal gray (vlPAG) region resulting from sciatic crushed nerve injury in rats. Results: Acupuncture treatment at Huantiao (GB30), Yanglingquan (GB34), and Weizhong (BL40) facilitated functional recovery. C-Fos and nitric oxide synthase expressions in the brain and BDNF and TrkB expressions in the sciatic nerve were decreased by acupuncture treatment. The most potent effects of acupuncture were observed at the GB30 acupoint. Conclusion: It is possible that acupuncture can be used for pain control and functional recovery from sciatic nerve injury.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권2호
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.