Browse > Article
http://dx.doi.org/10.5487/TR.2015.31.4.415

Job Stress and Neuropeptide Response Contributing to Food Intake Regulation  

Kim, Ki-Woong (Occupational Safety and Health Research Institute, KOSHA)
Won, Yong Lim (Occupational Safety and Health Research Institute, KOSHA)
Ko, Kyung Sun (Occupational Safety and Health Research Institute, KOSHA)
Kang, Seong-Kyu (Korean Occupational Safety and Health Agency)
Publication Information
Toxicological Research / v.31, no.4, 2015 , pp. 415-420 More about this Journal
Abstract
The purpose of the present study is to investigate the correlations between food intake behavior and job stress level and neuropeptide hormone concentrations. Job strain and food intake behavior were first identified using a self-reported questionnaire, concentrations of neuropeptide hormones (adiponectin, brain derived neurotrophic factor [BDNF], leptin, and ghrelin) were determined, and the correlations were analyzed. In the results, job strain showed significant correlations with adiponectin (odds ratio [OR], 1.220; 95% confidence interval [CI], 1.001~1.498; p < 0.05) and BDNF (OR, 0.793; 95% CI, 0.646~0.974; p < 0.05), and ghrelin exhibited a significant correlation with food intake score (OR, 0.911; 95% CI, 0.842~0.985, p < 0.05). These results suggest that job stress affects food intake regulation by altering the physiological concentrations of neuropeptide hormones as well as emotional status.
Keywords
Job stress; Food intake behavior; Neuropeptides; Workers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 World Health Organization. (2012) Depression is a common illness and people suffering from depression need support and treatment. Available from: http://www.who.int/mediacentre/news/notes/2012/mental_health_ day_20121009/en/.
2 Keil, R.M. (2004) Coping and stress: a conceptual analysis. J. Adv. Nurs., 45, 659-665.   DOI
3 Fryer, S., Waller, G. and Kroese, B.S. (1997) Stress, coping, and disturbed eating attitudes in teenage girls. Int. J. Eating Disord., 22, 427-436.   DOI
4 Dallman, M.F. (2010) Stress-induced obesity and the emotional nervous system. Trends Endocrinol. Metab., 21, 159-165.   DOI
5 Bomhof-Roordink, H., Seldenrijk, A., van Hout, H.P., van Marwijk, H.W., Diamant, M. and Penninx, B.W. (2015) Association between life stress and subclinical cardiovascular disease are partly mediated by depressive and anxiety symptoms. J. Psychosom. Res., 78, 332-339.   DOI
6 Woods, S.C. and Seeley, R.J. (2005) Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. Drug Discovery Today Dis. Mech., 2, 321-326.   DOI
7 Moons, W.G., Eisenberger, N.I. and Taylor, S.E. (2010) Anger and fear response to stress have different biological profiles. Brain Behav. Immu., 24, 215-219.   DOI
8 Spoor, S.T., Bekker, M.H., Van Strien, T. and van Heck, G.L. (2007) Relations between negative affect, coping, and emotional eating. Appetite, 48, 368-376.   DOI
9 Lebrun, B., Bariohay, B., Moyse, E. and Jean, A. (2006) Brain-derived neurotrophic factor (BDNF) and food intake regulation: a minireview. Auton. Neurosci., 126-127, 30-38.   DOI
10 Nour, H.A., El Sawaf, A.L., Elewa, S.M. and El Sayed, Y. (2014) Strength and independence of associations between ghrelin, leptin, adiponectin and insulin in stimulating basic functions to energy metabolism. Alexandria J. Med., 50, 49-59.   DOI
11 Spencer, S.J., Emmerzaal, T.L., Kozicz, T. and Andrews, Z.B. (2015) Ghrelin's role in the hypothalamic-pituitary-adrenal axis stress response: Implications for mood disorders. Biol. Psychiatry, 78, 19-27.   DOI
12 Stieg, M.R., Sievers, C., Farr, O., Stalla, G.K. and Mantzoros, C.S. (2015) Leptin: A hormone linking activation of neuroendocrine axes with neuropathology. Psychoneuroendocrinology, 51, 47-57.   DOI
13 Appelhans, B.M., Pagoto, S.L., Peters, E.N. and Spring, B.J. (2010) HPA axis response to stress predicts short-term snack intake in obese women. Appetite, 54, 217-220.   DOI
14 Fernandez-Real, J.M., Lopez-Bermejo, A., Casamitjana, R. and Ricart, W. (2003) Nevel interactions of adiponectin with the endocrine system and inflammatory parameters. J. Clin. Endocrinol. Metab., 88, 2714-2718.   DOI
15 Issa, G., Wilson, C., Terry, A.V. Jr. and Pillai, A. (2010) An inverse relationship between cortisol and BDNF levels in schizophrenia: data from human postmortem and animal studies. Neurobiol. Dis., 39, 327-333.   DOI
16 Monteleone, P. and Maj, M. (2013) Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: beyond the homeostatic control of food intake. Psychoneuoendocrinology, 38, 313-330.
17 Raspopow, K., Abizaid, A., Matheson, K. and Anisman, H. (2014) Anticipation of a psychosocial stressor differentially influences ghrelin, cortisol and food intake among emotional and non-emotional eaters. Appetite, 74, 35-43.   DOI
18 Karasek, R. (1996) Job content questionnare and user's guide. University of Massachusetts at Lowell.
19 Son, M.S. and Kim, M.J. (2001) The effects of nutrition education program for various chronic disease in elderly visiting public health center. Korean J. Community Nutr., 6, 668-677.
20 Fernandez-Real, J.M., Pugeat, M., Lopez-Bermejo, A., Bornet, H. and Ricart, W. (2005) Corticosteroid-binding globulin affects the relationship between circulating adiponectin and cortisol in men and women. Metab. Clin. Exp., 54, 584-589.   DOI
21 Jaremka, L.M., Belury, M.A., Andridge, R.R., Malarkey, W.B., Glaser, R., Christian, L., Emery, C.F. and Kiecolt-Glaser, J.K. (2014) Interpersonal stressors predict ghrelin and leptin levels in women. Psychoneuoendocrinology, 48, 178-188.   DOI
22 Wardle, J., Chida, Y., Gibson, E.L., Whitaker, K.L. and Steptoe, A. (2011) Stress and adiposity: a meta-analysis of longitudinal studies. Obesity, 19, 771-778.   DOI
23 Upton, K.R. and Riley, L.G. (2013) Acute stress inhibits food intake and alters gkrelin signaling in the brain of tilapia (Oreochromis mossabbicus). Domest. Anim. Endocrinol., 44, 157-164.   DOI
24 Şahin, T.D., Karson, A., Balci, F., Yazir, Y., Bayramgürler, D. and Utkan, T. (2015) TNF-alpha inhibition prevent cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav. Brain Res., 292, 233-240.   DOI
25 Marcedo, I.C., Rozisky, J.R., Oliveira, C., Oliveria, C.M., Laste, G., Nonose, Y., Santos, V.S., Marques, P.R., Ribeiro, M.F., Caumo, W. and Torres, I.L. (2015) Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats. Neuropeptides, 51, 75-81.   DOI
26 Lee, H., Joe, K.H., Kim, W., Park, J., Lee, D.H., Sung, K.W. and Kim, D.J. (2006) Increased leptin and decreased ghrelin level after smoking cessation. Neurosci. Lett., 409, 47-51.   DOI
27 Onen Sertoz, O., Tolga Binbay, I., Koylu, E., Noyan, A., Yildirim, E. and Elbi Mete, H. (2008) The role of BDNF and HPA axis in the neurobiology of burnout syndrome. Prog. Neuro Psychopharmacol. Biol. Psychiatry, 32, 1459-1465.   DOI
28 Yang, S., Meredith, P. and Khan, A. (2015) Stress and burnout among healthcare professional working in a mental health setting in Singapore. Asian J. Psychiatry, 15, 15-20.   DOI
29 Ochi, M., Tominaga, K., Tanaka, F., Tanigawa, T., Shiba, M., Watanabe, T., Fujiwara, Y., Oshitani, N., Higuchi, K. and Arakawa, T. (2008) Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats. Life Sci., 82, 862-868.   DOI
30 Knutson, K.L., Spiegel, K., Penev, P. and Van Cauter, E. (2007) The metabolic consequences of sleep deprivation. Sleep Med. Rev., 11, 163-178.   DOI
31 Tomiyama, A.J., Schamarek, I., Lustig, R.H., Krischbaum, C., Puterman, E., Havel, P.J. and Epel, E.S. (2012) Leptin concentrations in response to acute stress predict subsequent intake of comfort foods. Physiol. Behav., 107, 34-39.   DOI
32 Dalman, M.F., Pecoraro, N., Akana, S.F., La Fleur, S.E., Gomez, F., Houshyar, H., Bell, M.E., Bhatnagar, S., Laugero, J.D. and Manalo, S. (2003) Chronic stress and obesity: a new view of "comfort food". Proc. Natl. Acad. Sci. U.S.A., 100, 11696-11701.   DOI
33 Oliver, G., Wardle, J. and Gibson, E.L. (2000) Stress and food choice: a laboratory study. Psychosom. Med., 62, 853-865.   DOI