Effects of Acupuncture at GB30, GB34, and BL40 on Functional Recovery after Sciatic Crushed Nerve Injury in Rats

  • Lee, Moon-Kyu (Department of Oriental Rehabilitation Medicine, College of Oriental Medicine, Kyung-Won University) ;
  • Song, Yun-Kyung (Department of Oriental Rehabilitation Medicine, College of Oriental Medicine, Kyung-Won University) ;
  • Lim, Hyung-Ho (Department of Oriental Rehabilitation Medicine, College of Oriental Medicine, Kyung-Won University)
  • Received : 2010.03.03
  • Accepted : 2010.05.04
  • Published : 2010.05.30

Abstract

Background: Peripheral nerve injuries are a commonly-encountered clinical problem and often result in a chronic pain and severe functional deficits. Objectives: The aim of this study was to evaluate the effects of acupuncture on the descending pain and the recovery of the locomotor function that follows sciatic crushed nerve injury in rats. Method: In order to assess the effects of acupuncture on the descending pain and functional recovery, we investigated the walking track analysis, brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) expression in the sciatic nerve, and on the expressions of c-Fos and nitric oxide synthase in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral periaqueductal gray (vlPAG) region resulting from sciatic crushed nerve injury in rats. Results: Acupuncture treatment at Huantiao (GB30), Yanglingquan (GB34), and Weizhong (BL40) facilitated functional recovery. C-Fos and nitric oxide synthase expressions in the brain and BDNF and TrkB expressions in the sciatic nerve were decreased by acupuncture treatment. The most potent effects of acupuncture were observed at the GB30 acupoint. Conclusion: It is possible that acupuncture can be used for pain control and functional recovery from sciatic nerve injury.

Keywords

References

  1. Hsu CC, Weng CS, Liu TS, Tsai YS, Chang YH. Effects of electrical acupuncture on acupoint BL15 evaluated in terms of heart rate variability, pulse rate variability and skin conductance response. Am J Chin Med. 2006; 34:23-36. https://doi.org/10.1142/S0192415X06003606
  2. Kimura K, Masuda K, Wakayama I. Changes in skin blood flow and skin sympathetic nerve activity in response to manual acupuncture stimulation in humans. Am J Chin Med. 2006; 34:189-96. https://doi.org/10.1142/S0192415X06003758
  3. Yan B, Li K, Xu J, Wang W, Li K, Liu H. Acupoint-specific fMRI patterns in human brain. Neurosci Lett. 2005; 383:236-40. https://doi.org/10.1016/j.neulet.2005.04.021
  4. Sohn YJ, Won R, Jung HS, Kim YS, Park YB, Sohn NW. 2-DG Autoradiographic imaging of brain activity patterns by electroacupuncture stimulation in awake rats. The journal of Korean Acupuncture & Moxibustion Society. 2001; 18(3):56-68.
  5. Inoue M, Kitakoji H, Yano T, Ishizaki N, Itoi M, Katsumi Y. Acupuncture Treatment for Low Back Pain and Lower Limb Symptoms - The Relation between Acupuncture or Electroacupuncture Stimulation and Sciatic Nerve Blood Flow. Evid Based Complement Alternat Med. 2008; 5:133-43. https://doi.org/10.1093/ecam/nem050
  6. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988; 33:87-107. https://doi.org/10.1016/0304-3959(88)90209-6
  7. Lee MH, Kim H, Lim BV, Chang HK, Lee TH, Jang MH, et al. Naloxone potentiates treadmill running-induced increase in c-Fos expression in rat hippocampus. Life Sci. 2003; 73:3139-47. https://doi.org/10.1016/j.lfs.2003.06.005
  8. Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Euro J Neurosci. 2001; 14:1143-52. https://doi.org/10.1046/j.0953-816x.2001.01733.x
  9. Engblom D, Ericsson-Dahlstrand ME, Blomqvist A. Activation of prostanoid EP3 and EP4 receptor mRNA-expressing neurons in the rat parabrachial nucleus by intravenous injection of bacterial wall lipopolysaccharide. J Compara Neuro. 2001; 440:378-86. https://doi.org/10.1002/cne.1391
  10. Harada S, Kamiya K, Masago A, Iwata K, Yamada A. Subarachnoid hemorrhage induces c-fos, c-jun and hsp70 mRNA expression in rat brain. Neuroreport. 1997; 8:399-404. https://doi.org/10.1097/00001756-199701200-00003
  11. Shizuki K, Ogawa K, Matsunobu T, Kanzaki J, Ogita K. Expression of c-Fos after noise-induced temporary threshold shift in the guinea pig cochlea. Neurosci Lett. 2002; 320:73-6. https://doi.org/10.1016/S0304-3940(02)00059-9
  12. Birklein F. Mechanisms of neuropathic pain and their importance in Fabry disease. Acta Paediatr Suppl. 2002; 91:34-7.
  13. Rassnick S, Hoffman GE, Rabin BS, Sved AF. Injection of corticotropin-releasing hormone into the locus coeruleus or foot shock increases neuronal Fos expression. Neuroscience. 1998; 85:259-68. https://doi.org/10.1016/S0306-4522(97)00574-5
  14. Passerin AM, Cano G, Rabin BS, Delano BA, Napier JL, Sved AF. Role of locus coeruleus in foot shock-evoked Fos expression in rat brain. Neuroscience. 2000; 101:1071-82. https://doi.org/10.1016/S0306-4522(00)00372-9
  15. De Medeiros MA, Canteras NS, Suchecki D, Mello LE. Analgesia and c-Fos expression in the periaqueductal gray induced by electroacupuncture at the Zusanli point in rats. Brain Res. 2003; 973:196-204. https://doi.org/10.1016/S0006-8993(03)02479-X
  16. Hattori Y, Watanabe M, Iwabe T, Tanaka E, Nishi M, Aoyama J, et al. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Res. 2004; 1021:183-91. https://doi.org/10.1016/j.brainres.2004.06.048
  17. Boegman RJ, Parent A. Differential sensitivity of neuropeptide Y, Somatostatin and NADPHdiaphorase containing neurons in rat cortex and striatum to quinolinic acid. Brain Res. 1998; 445:358-62.
  18. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996; 19: 289-317. https://doi.org/10.1146/annurev.ne.19.030196.001445
  19. Zou R, Xu Y, Zhang HX. Evaluation on analgesic effect of electroacupuncture combined with acupoint-injection in treating lumbar intervertebral disc herniation. Zhongguo Gu Shang. 2009; 22(10):759-61.
  20. Lee SH, Cheong BS, Yun HS, Cho SG, Lee YH, Kim SU. Therapeutic effect of Weizhong (BL40) venepuncture on low back pain. The journal of Korean Acupuncture & Moxibustion Society. 2002; 19(1):65-75.
  21. De Koning P, Brakkee JH, Gispen WH. Methods for producing a reproducible crush in the sciatic and tibial nerve of the rat and rapid and precise testing of return of sensory function. Beneficial effects of melanocortins. J Neurol Sci. 1986; 74:237-46. https://doi.org/10.1016/0022-510X(86)90109-7
  22. Shan S, Qi-Liang MY, Hong C, Tingting L, Mei H, Haili P, et al. Is functional state of spinal microglia involved in the anti-allodynic and anti-hyperalgesic effects of electroacupuncture in rat model of monoarthritis? Neurobiol Dis. 2007; 26:558-68. https://doi.org/10.1016/j.nbd.2007.02.007
  23. Sun S, Cao H, Han M, Li TT, Zhao ZQ, Zhang YQ. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull. 2008; 83-93.
  24. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast. Reconstr Surg. 1989; 83:129-38. https://doi.org/10.1097/00006534-198901000-00024
  25. Jang MH, Jung SB, Lee MH, Kim H, Lee SJ, Sim YJ, et al. Influence of maternal alcohol administration on c-Fos expression in the hippocampus of infant rats. Neurosci Lett. 2005; 378:44-8. https://doi.org/10.1016/j.neulet.2004.12.009
  26. Hurtak JJ. An overview of acupuncture medicine. J Altern Complement med. 2002; 8(5):535-8. https://doi.org/10.1089/107555302320825020
  27. Lin JG, Chen WL. Acupuncture analgesia: a review of its mechanisms of actions. Am J Chin Med. 2008; 36(4):635-45. https://doi.org/10.1142/S0192415X08006107
  28. charova K, Fercakova A, Jalc P, Marsala J. NADPH-diaphorase activity in the primary sensory neurons following peripheral axotomy. Biologia. 2001; 56:321-8.
  29. Marsala J, Kluchova D, Marsala M. Spinal cord gray matter layers rich in NADPH diaphorasepositive neurons are refractory to ischemiareperfusion-induced injury: A histochemical and silver impregnation study in rabbit. Exp Neurol. 1997; 145:165-79. https://doi.org/10.1006/exnr.1997.6455
  30. Irving G, Goli V, Dunteman E. Novel pharmacologic options in the treatment of neuropathic pain. CNS Spectr. 2004; 9:1-11.
  31. Vogelaar CF, Vrinten DH, Hoekman MF, Brakkee JH, Burbach JP, Hamers FP. Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res. 2004; 1027:67-72. https://doi.org/10.1016/j.brainres.2004.08.036
  32. Kang JE, Lee HJ, Lim S, Kim EH, Lee TH, Jang MH, et al. Acupuncture modulates expressions of nitric oxide synthase and c-Fos in hippocampus after transient global ischemia in gerbils. Am J Chin Med. 2003; 31(4):581-90. https://doi.org/10.1142/S0192415X03001235
  33. Minoru N, Ozaki S, Narita M, Ise Y, Yajima YI, Suzuki T. Change in the expression of c-Fos in the rat brain following sciatic nerve ligation. Neurosci Lett. 2003; 352:231-3. https://doi.org/10.1016/j.neulet.2003.08.052
  34. Kuroda R, Yorimae A, Yamada Y, Nakatani J, Takatsuji K. C-Fos expression after formalin injection into the face in the cat. Stereotact Funct Neurosurg. 1995; 65:152-6. https://doi.org/10.1159/000098686
  35. Smith WJ, Stewart J, Pfaus JG. Tail pinch induces Fos immunoreactivity within several regions of the male rat brain: effects of age. Physiol Behav. 1997; 61:717-23. https://doi.org/10.1016/S0031-9384(96)00524-0
  36. Rodella L, Rezzani R, Gioia M, Tredici G, Bianchi R. Expression of Fos immunoreactivity in the rat supraspinal regions following noxious visceral stimulation. Brain Res Bull. 1998; 47: 357-66. https://doi.org/10.1016/S0361-9230(98)00123-3
  37. Lima D, Mendes-Ribeiro JA, Coimbra A. The spino-latero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience. 1991; 45:137-52. https://doi.org/10.1016/0306-4522(91)90110-A
  38. Cunningham ET, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol. 1988; 274:60-76. https://doi.org/10.1002/cne.902740107
  39. Nishimori T, Ikeda T, Terayama R, Ishida Y, Nakamura T, Otahara N. Effect of ionotropic glutamate receptor antagonists on Fos-like immunoreactivity in the dorsal horn following transection of the rat sciatic nerve. Brain Res. 2002; 934:81-6. https://doi.org/10.1016/S0006-8993(02)02369-7
  40. Tokunaga A, Kondo E, Fukuoka T, Miki K, Dai Y, Tsujino H, et al. Excitability of spinal cord and gracile nucleus neurons in rats with chronically injured sciatic nerve examined by c-Fos expression. Brain Res. 1999; 847:321-31. https://doi.org/10.1016/S0006-8993(99)02074-0
  41. Narita M, Ozaki S, Narita M, Ise Y, Yajima Y, Suzuki T. Change in the expression of c-Fos in the rat brain following sciatic nerve ligation. Neurosci Lett. 2003; 352:231-3. https://doi.org/10.1016/j.neulet.2003.08.052
  42. Wang SM, Tsai HP, Huang JJ, Huang HC, Lin JL, Liu PH. Inhibition of nitric oxide synthase promotes facial axonal regeneration following neurorrhaphy. Exp Neurol. 2009; 216:499-510. https://doi.org/10.1016/j.expneurol.2009.01.006
  43. Balaratnasingam C, Ye L, Morgan WH, Bass L, Cringle SJ, Yu DY. Protective role of endothelial nitric oxide synthase following pressure-induced insult to the optic nerve. Brain Res. 2009; 1263:155-64. https://doi.org/10.1016/j.brainres.2009.01.031
  44. Lin HD, Wang H, Chen DS, Li JF, Gu YD. Effect of extract of Ginkgo biloba leaves on expression of inducible nitric oxide synthase after sciatic nerve injury: experiment with rats. Zhnghua Yi Xue Za Zhi. 2007; 87:485-8.
  45. Schmidhammer R, Hausner T, Hopf R, Zandieh S, Redl H. In peripheral nerve regeneration environment enriched with activity stimulating factors improves functional recovery. Acta Neurochir Suppl. 2007; 100:161-7. https://doi.org/10.1007/978-3-211-72958-8_34
  46. Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res. 2007; 4:143-51. https://doi.org/10.2174/156720207780637216
  47. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995; 18:223-53. https://doi.org/10.1146/annurev.ne.18.030195.001255
  48. Fan G, Copray S, Huang EJ, Jones K, Yan Q, Walro J, et al. Formation of a full complement of cranial proprioceptors requires multiple neurotrophins. Dev Dyn. 2000; 218:359-70. https://doi.org/10.1002/(SICI)1097-0177(200006)218:2<359::AID-DVDY9>3.0.CO;2-L
  49. Matsuo S, Ichikawa H, Silos-Santiago I, Arends JJ, Henderson TA, Kiyomiya K, et al. Proprioceptive afferents survive in the masseter muscle of TrkC knockout mice. Neuroscience. 2000; 95:209-16.
  50. Yang MS, Shin MS, Ahn HL. The Effects of Ohyaksungi-san and Electrical Acupuncture on Nerve Regeneration after Crush Injury in Rat Sciatic Nerve. J Oriental Rehab Med. 2008; 18(4):25-37.
  51. Ahn HL, Yang MS, Shin MS, Choi JB, Kim SJ. The Experimental Study of Electroacupuncture and Cervi Pantortichum Cornu Pharmacopuncture on Pain Decrease and Nerve Regeneration after Crush Injury of Sciatic Nerve. J Oriental Rehab Med. 2009; 19(1):39-55.