• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.022 seconds

ON SPECTRAL CONTINUITIES AND TENSOR PRODUCTS OF OPERATORS

  • Kim, In Hyoun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.113-119
    • /
    • 2011
  • Let T be a bounded linear operator on a complex Hilbert space $\mathcal{H}$. An operator T is called class A operator if ${\left|{T^2}\right|}{\geq}{\left|{T^2}\right|}$ and is called class A(k) operator if $({T^*\left|T\right|^{2k}T})^{\frac{1}{k+1}}{\geq}{\left|T\right|}^2$. In this paper, we show that ${\sigma}$ is continuous when restricted to the set of class A operators and consider the tensor products of class A(k) operators.

INVARIANTS WITH RESPECT TO ALL ADMISSIBLE POLAR TOPOLOGIES

  • Cho, Min-Hyung;Hwang, Hong Taek
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 1999
  • Let X and Y be topological vector spaces. For a sequence {$T_j$} of bounded operators from X into Y the $c_0$-multiplier convergence of ${\sum}T_j$ is an invariant on topologies which are stronger (need not strictly) than the topology of pointwise convergence on X but are weaker (need not strictly) than the topology of uniform convergence on bounded subsets of X.

  • PDF

BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS

  • FERRANDO, JUAN CARLOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1579-1586
    • /
    • 2015
  • In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.

TOEPLITZ OPERATORS ON HARDY AND BERGMAN SPACES OVER BOUNDED DOMAINS IN THE PLANE

  • Chung, Young-Bok;Na, Heui-Geong
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • In this paper, we show that algebraic properties of Toeplitz operators on both Bergman spaces and Hardy spaces on the unit disc essentially generalizes on arbitrary bounded domains in the plane. In particular, we obtain results for the uniqueness property and commuting problems of the Toeplitz operators on the Hardy and the Bergman spaces associated to bounded domains.

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2018
  • In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS

  • Hong. Sung-Geum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed p=2n/(n+1+$2\delta) and 0<\delta\leq(n-1)/2$ that the maximal function is bounded on L^p-{rad}$.

  • PDF

A NOTE ON VARIATION CONTINUITY FOR MULTILINEAR MAXIMAL OPERATORS

  • Xiao Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.207-216
    • /
    • 2024
  • This note is devoted to establishing the variation continuity of the one-dimensional discrete uncentered multilinear maximal operator. The above result is based on some refine variation estimates of the above maximal functions on monotone intervals. The main result essentially improves some known ones.

NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$

  • Jo, Young-Soo
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.329-334
    • /
    • 2008
  • Given operators X and Y acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, the following is proved: Let $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$ and let X and Y be operators acting on a Hilbert space H. Let P be the projection onto the $\overline{rangeX}$. If PE = EP for each E ${\in}$ $\mathcal{L}$, then the following are equivalent: (1) sup ${{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}}:f{\in}\mathcal{H},\;E{\in}\mathcal{L}}$ < ${\infty},\;\overline{rangeY}\;{\subset}\;\overline{rangeX}$, and there is a bounded operator T acting on $\mathcal{H}$ such that < Xf, Tg >=< Yf, Xg >, < Tf, Tg >=< Yf, Yg > for all f and gin $\mathcal{H}$ and $T^*h$ = 0 for h ${\in}\;{\overline{rangeX}}^{\perp}$. (2) There is a normal operator A in AlgL such that AX = Y and Ag = 0 for all g in range ${\overline{rangeX}}^{\perp}$.