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TOEPLITZ OPERATORS ON HARDY AND BERGMAN

SPACES OVER BOUNDED DOMAINS IN THE PLANE

Young-Bok Chung and Heui-Geong Na

Abstract. In this paper, we show that algebraic properties of
Toeplitz operators on both Bergman spaces and Hardy spaces on
the unit disc essentially generalizes on arbitrary bounded domains
in the plane. In particular, we obtain results for the uniqueness
property and commuting problems of the Toeplitz operators on the
Hardy and the Bergman spaces associated to bounded domains.

1. Introduction

Suppose that Ω is a bounded domain in the complex plane with C∞

smooth boundary. For ϕ ∈ L∞(bΩ), the Toeplitz operator HTΩ
ϕ with

symbol ϕ on the Hardy space H2(bΩ) is the bounded linear operator on
H2(bΩ) defined by

HTΩ
ϕ (f) = PΩ(ϕf), f ∈ H2(bΩ)

where PΩ is the Szegő projection associated to Ω. Toeplitz operators on
Bergman spaces are similarly defined. For a bounded domain Ω(possibly
without smoothness of the boundary) and for ϕ ∈ L∞(Ω), the Toeplitz
operator BTΩ

ϕ with symbol ϕ on the Bergman space H2(Ω) is the oper-

ator on H2(Ω) defined by

BTΩ
ϕ (f) = BΩ(ϕf), f ∈ H2(Ω)

where BΩ is the Bergman projection associated to Ω. Algebraic prop-
erties, for instance, commuting properties of the Toeplitz operators on
both Hardy spaces and Bergman spaces have been studied mainly for
the case of the unit disc until now. So it is natural to ask whether we
can generalize the results proved in the case of the unit disc to general
bounded domains. Simply connected bounded domains are conformally
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equivalent to the unit disc via the Riemann mapping function and sim-
ilarly finitely connected bounded domains are proper holomorphically
mapped onto the unit disc via the Ahlfors map. So in this direction of
work, we need to study the boundary behavior of biholomorphic and
proper holomorphic mappings.

This paper is outlined as follows. In §2 we introduce notations and
notions used in the paper and list known results. In particular, we survey
on important properties of the classical kernel functions and orthogonal
projections to be used often in the paper. In addition we mention the
(known) transformation formulas for the Bergman projections and the
Szegő projections under proper holomorphic mappings between domains
which are key elements for obtaining our results in this paper.

In §3 we find the transformation formulas for the Toeplitz operators
under the Riemann map and the Ahlfors map which is based on the re-
sult of Bell in [Bel81] about the transformation formulas for the Bergman
projection and the Bergman kernel under proper holomorphic maps. In
§4 we study on uniqueness of Toeplitz operators. The first author proved
in [Chu09] that the correspondence ϕ→ HTΩ

ϕ is one-to-one for general
domain Ω. We also prove that Toeplitz operators on Bergman spaces
associated to general domains have uniqueness property.

A. Brown and P. R. Halmos[BH64] classified commuting Toeplitz op-
erators on the Hardy space in the case of the unit disc. And S. Axler and
Ž. Čučković[AČ91] also solved the commuting problem of two Toeplitz
operators on the Bergman space with bounded harmonic symbols for the
unit disc case. On the other hand, the first author in [Chua], [Chub],
and [Chuc] obtained many results of algebraic properties of the Laurent
and the Toeplitz operators on the Hardy spaces associated to general
bounded domains in the plane by constructing an orthonormal basis for
L2-space. In §5 and §6, we study on commuting problems for Toeplitz
operators on both Hardy spaces and Bergman spaces for general do-
mains. S. Axler, Ž. Čučković and N. V. Rao[AČR00] proved a partial
result for the commuting problem of Toeplitz operators with analytic
symbols on Bergman spaces for general domains using an approximation
theorem. We generalize the corresponding result for Toeplitz operators
on Hardy spaces associated to general domains by using the orthogonal
decomposition of L2-functions.



Toeplitz Operators over bounded domains 145

2. Preliminaries and Notes

Suppose that Ω is a finitely connected bounded domain in the plane
with C∞ smooth boundary. The Cauchy integral formula says that for
any homomorphic function f in a neighborhood of Ω and for any point
a in Ω, the value of f at a is represented by the boundary values of f
via

(2.1) f(a) =
1

2πi

∫
bΩ

f(z)

z − a
dz.

If we introduce the classical L2 inner product < , > defined by

< u, v >=

∫
bΩ
u v ds,

where ds is the differential element of arc length on the boundary bΩ,
the integral formula (2.1) is equivalent to the identity

f(a) =< f,Ca >,

where Ca(z) =
1

2πi

T (z)

z − a
is the Cauchy kernel and T is the unit tan-

gent vector function on bΩ pointing in the direction of the standard
orientation of bΩ. This motivates to studying on the Hardy space of the
boundary of Ω as follows.

Let L2(bΩ) be the Hilbert space completion of C∞(bΩ) with respect
to the inner product < , > and let H2(bΩ) denote the classical Hardy
space associated to Ω which is the space of holomorphic functions on Ω
with L2-boundary values in bΩ. Since H2(bΩ) can be regarded as the
completion of the restrictions of holomorphic functions in C∞(Ω) to bΩ
in L2(bΩ), it follows from the inequality |f(a)| ≤ ‖f‖L2(bΩ)‖Ca‖L2(bΩ)

that the evaluation function at a ∈ Ω is a continuous linear functional
on H2(bΩ). Thus, given a ∈ Ω, we can apply the Riesz Representation
Theorem to the linear functional on H2(bΩ) to get a unique function
Sa ∈ H2(bΩ) such that for all f ∈ H2(bΩ),

f(a) =< f, Sa >=

∫
bΩ
f Sa ds.

On the other hand, since H2(bΩ) is a closed subspace of L2(bΩ), there
exists the orthogonal projection of L2(bΩ) onto H2(bΩ) called the Szegő
projection which is denoted by

PΩ : L2(bΩ)→ H2(bΩ).



146 Young-Bok Chung and Heui-Geong Na

Since for all f ∈ H2(bΩ),

< f, Sa >= f(a) =< f,Ca >=< f, PΩ(Ca) >

and PΩ(Ca) ∈ H2(bΩ), the uniqueness property for the function Sa
implies that

PΩ(Ca) = Sa

and we call Sa the Szegő kernel for the the Szegő projection PΩ and Sa
is denoted by Sa(z) = S(z, a) when it is considered as a function of two
varibales z and a.

It is well known (see [Bel90b], [Bel91a]) that any u ∈ L2(bΩ) has an
orthogonal decomposition as a direct sum of the Hardy space H2(bΩ)
and the orthogonal complement H2(bΩ)⊥ of the Hardy space via

(2.2) u = PΩ(u) + T PΩ(uT ).

There is also a special kernel function which is the kernel for the or-
thogonal projection P⊥Ω of the Szegő projection PΩ in some sense. The
Garabedian kernel function L(z, a) is defined by
(2.3)

L(z, a) =
1

2π(z − a)
+ PΩ

(
iCaT

)
(z) =

1

2π(z − a)
+ < iCaT , Sz > .

It is easy to see from (2.3) that for fixed a ∈ Ω, L(z, a) is a mero-
morphic function on Ω with a single simple pole at z = a having residue
1

2π
which extends C∞ smoothly up to the boundary of Ω. It is also

known(see [Bel90b]) that L(z, a) never vanishes for all (z, a) ∈ Ω × Ω
with z 6= a. An important property about the Szegő kernel and the
Garabedian kernel to which we often refer in this paper is

(2.4) L(z, a) = i S(z, a) T (z), (z, a) ∈ bΩ× Ω.

It is very interesting to see that when Ω is simply connected, given a ∈ Ω,
the quotient map

fa(z) =
S(z, a)

L(z, a)

is the Riemann mapping function associated to the pair (Ω, a) which is
a biholomorphic mapping of Ω onto the unit disc with fa(a) = 0 and
f ′a(a) > 0, having the extremal property as follows: the function fa
maximizes h′(a) among all holomorphic functions h mapping Ω into the
unit disc making h′(a) real valued (see [Gar49]).

It is natural to ask whether we can do the same thing for the case
of a finitely connected domain. There is a kind of generalization of
the Riemann mapping function to a finitely connected domain which is
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called the Ahlfors map. For a finitely connected n-connected domain Ω
in the plane with C∞ smooth boundary and given a ∈ Ω, the Ahlfors
map fa (we use the same notation as the Riemann mapping function
for convenience) associated to the pair (Ω, a) is the unique solution to
the extremal problem: among all holomorphic functions h mapping Ω
into the unit disc, find the one making h′(a) real-valued and as large
as possible. It is well known (see [Gar49], [Bel91b], [Bel99]) that the
function fa is an n-to one proper holomorphic covering map of Ω onto
the unit disc and is equal to the quotient

(2.5) fa(z) =
S(z, a)

L(z, a)

of the Szeő kernel and Garabedian kernel functions.

Like the Hardy space, there is the space of holomorphic functions on
Ω which are square integrable on Ω with respect to area measure dA
which is called the Bergman space and is denoted by H2(Ω). And since
H2(Ω) is a closed subspace of the Hilbert space L2(Ω) with the inner

product 〈u, v〉Ω =

∫∫
Ω
uv dA, there exists the orthogonal projection BΩ

of L2(Ω) onto H2(Ω) called the Bergman projection. Furthermore given
w ∈ Ω, since evaluation at w is a continuous linear functional on the
Hilbert space H2(Ω), by the Riesz Representation theorem, there is the
unique function K(·, w) which is called the Bergman kernel function such
that for all u ∈ L2(Ω)

(BΩ(u))(w) = 〈BΩ(u),K(·, w)〉Ω = 〈u,K(·, w)〉Ω =

∫∫
Ω
K(w, z)u(z) dA.

Now in order to extend the previous results on Toeplitz operators for
the unit disc to general domains, we need the following transformation
formulas for the Bergman projections and the Szegő projections under
biholomorphic (and proper holomorphic) mappings between domains
proved by Bell[Bel81] (see also [Bel92] for Szegő projections).

Proposition 2.1. Suppose that f : Ω1 → Ω2 is a biholomorphic
mapping between C∞ smoothly bounded domains Ω1 and Ω2 in the
plane. Let PΩi be the Szegő projections of L2(bΩi) onto H2(bΩi), i =
1, 2. Then for all ϕ ∈ L2(bΩ2), the Szegő projections transform via

(2.6) PΩ1

(√
f ′(ϕ ◦ f)

)
=
√
f ′ ((PΩ2ϕ) ◦ f) ,

where
√
f ′ is one of the square roots of f ′ which is well defined.
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Proposition 2.2. Suppose that f : Ω1 → Ω2 is a proper holomor-
phic mapping between bounded domains in the plane. Let BΩi be the
Bergman projections of L2(Ωi) onto H2(Ωi), i = 1, 2. Then for all
ϕ ∈ L2(Ω2), the Bergman projections transform via

(2.7) BΩ1

(
f ′(ϕ ◦ f)

)
= f ′ ((BΩ2ϕ) ◦ f) .

Proposition 2.3. Suppose that f : Ω1 → Ω2 is a proper holomor-
phic mapping between bounded domains in the plane. Let m be the
multiplicity of f and let F1, F2, · · · , Fm be the local inverses to f . Let
KΩi(z, w) be the Bergman kernel functions associated to Ωj , i = 1, 2.
Then for all z ∈ Ω1, w ∈ Ω2, the Bergman kernel functions transform
via

(2.8) f ′(z)KΩ2(f(z), w) =
m∑
k=1

KΩ1(z, Fk(w))F ′k(w).

3. Transformation rules for Toeplitz operators

In this section, we find transformation formulas for Toeplitz opera-
tors on Bergman spaces under bihomorphic (and proper holomorphic)
mappings and on Hardy spaces under biholomorphic mappings.

Theorem 3.1. Suppose that Ω is a C∞ smoothly bounded simply
connected domain and let a ∈ Ω be fixed. Let fa be the Riemann
mapping function associated to the pair (Ω, a). Let HTΩ

ϕ and HTUψ
denote the Toeplitz operators on Hardy spaces associated to the pair
of Ω and the symbol ϕ ∈ L∞(bΩ) and to the pair of the unit disc U
and the symbol ψ ∈ L∞(bU), respectively. Then for all ϕ ∈ L∞(bΩ)
and h ∈ H2(bΩ), the Toeplitz operators transform under the Riemann
mapping function via

(3.1)
√
F ′a
(
HTΩ

ϕ (h) ◦ Fa
)

= HTUϕ◦Fa

(√
F ′a(h ◦ Fa)

)
,

where Fa is the inverse to fa.

Proof. Let ϕ ∈ L∞(bΩ) and h ∈ H2(bΩ). Notice that
√
F ′a(h ◦ Fa)

is in H2(bU) by change of variables. The proof is straightforward from
Proposition 2.1 as follows.√

F ′a
(
HTΩ

ϕ (h) ◦ Fa
)

=
√
F ′a (PΩ(ϕh) ◦ Fa)

= PU

(√
F ′a ((ϕh) ◦ Fa)

)
= PU

(√
F ′a(ϕ ◦ Fa)(h ◦ Fa)

)
= HTUϕ◦Fa

(√
F ′a(h ◦ Fa)

)
.
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Similar to the Hardy space case, we have the transformation formula
for Toeplitz operators on Bergman spaces of simply connected domains.

Theorem 3.2. Suppose that Ω is a bounded simply connected do-
main and let a ∈ Ω be fixed. Let fa the Riemann mapping function
associated to the pair (Ω, a). Let BTΩ

ϕ and BTUψ denote the Toeplitz
operators on Bergman spaces associated to the pair of Ω and the symbol
ϕ ∈ L∞(Ω) and to the pair of the unit disc U and ψ ∈ L∞(U), respec-
tively. Then for all ϕ ∈ L∞(Ω) and h ∈ H2(Ω), the Toeplitz operators
transform under the Riemann mapping function via

(3.2) F ′a
(
BTΩ

ϕ (h) ◦ Fa
)

= BTUϕ◦Fa
(
F ′a(h ◦ Fa)

)
,

where Fa is the inverse to fa.

Proof. This is also straightforward by Proposition 2.2. Let ϕ ∈
L∞(Ω) and h ∈ H2(Ω). Applying the biholomorphic mapping Fa :
U → Ω to Proposition 2.2, we obtain

F ′a
(
BTΩ

ϕ (h) ◦ Fa
)

= F ′a (BΩ(ϕh) ◦ Fa)
= BU

(
F ′a ((ϕh) ◦ Fa)

)
= BU

(
F ′a(ϕ ◦ Fa)(h ◦ Fa)

)
= BTUϕ◦Fa

(
F ′a(h ◦ Fa)

)
.

Theorem 3.3. Suppose that Ω is a finitely n-connected domain and
let a ∈ Ω be fixed. Let fa the Ahlfors mapping function of Ω onto the
unit disc U associated to the pair (Ω, a). Let BTΩ

ϕ and BTUψ denote the
Toeplitz operators on Bergman spaces associated to the pair of Ω and the
symbol ϕ ∈ L∞(Ω) and to the pair of U and the symbol ψ ∈ L∞(U),
respectively. Then for all Φ ∈ L∞(U) and H ∈ H2(U), the Toeplitz
operators transform under the Ahlfors map via

(3.3)
n∑
k=1

F ′k
[(
BTΩ

Φ◦fa [f ′a(H ◦ fa)])
)
◦ Fk

]
= n BTUΦ (H),

where F1, F2, · · · , Fn are the local inverses to fa.

Proof. Let Φ ∈ L∞(U) and H ∈ H2(U). Since the Ahlfors map fa
is a proper holomorphic mapping from Ω onto the unit disc U , we can
apply Proposition 2.3 with fa as follows. Fix w ∈ U . Then using the
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change of variables, we have
n∑
k=1

F ′k
[(
BTΩ

Φ◦fa [f ′a(H ◦ fa)]
)
◦ Fk

]
(w)

=

n∑
k=1

F ′k(w)
[
BΩ

(
(Φ ◦ fa)f ′a(H ◦ fa)

)]
(Fk(w))

=

n∑
k=1

F ′k(w)
〈
(Φ ◦ fa)f ′a(H ◦ fa),KΩ(·, Fk(w))

〉
=

∫∫
Ω
Φ(fa(z))f

′
a(z)H(fa(z))

n∑
k=1

F ′k(w)KΩ(Fk(w), z)dAΩz

=

∫∫
Ω
Φ(fa(z))H(fa(z))f

′
a(z)f

′
a(z)KU (w, fa(z))dAΩz

= n

∫∫
U
Φ(ζ)H(ζ)KU (w, ζ)dAUζ

= n < ΦH,KU (·, w) >= n(BU (ΦH))(w)

= n(BTUΦ (H))(w).

4. Uniqueness of Toeplitz operators

In the case of the unit disc, it is well known that the correspondence
ϕ → BTUϕ and ϕ → HTUϕ are one to one. The first author in [Chu09]
also proved the following uniqueness property for Toeplitz operators on
Hardy spaces of general domains.

Proposition 4.1. Suppose that Ω is a C∞ smoothly bounded con-
nected domain and let ϕ ∈ C∞(bΩ). Suppose the Toeplitz operator
HTΩ

ϕ is the zero operator on H2(bΩ). Then ϕ vanishes on bΩ.

Here we prove the uniqueness property of Toeplitz operators on Bergman
spaces of general domains by using the transformation formula (3.2) for
the simply connected case and by using the Green’s operator for the
multiply connected case.

Theorem 4.2. Suppose that Ω is a bounded simply connected do-
main and let ϕ ∈ C∞(Ω). Suppose the Toeplitz operator BTΩ

ϕ is the

zero operator on H2(Ω). Then ϕ is the zero function on Ω.
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Proof. Suppose that for all h ∈ H2(Ω), BTΩ
ϕ (h) = 0. Then it follows

from the transformation formula (3.2) that BTUϕ◦Fa(F ′a(h ◦ Fa)) = 0.

Thus given H ∈ H2(U), we obtain f ′a(H ◦ fa) ∈ H2(Ω) and

BTUϕ◦Fa(H) = BTUϕ◦Fa
[
(F ′a(

[
f ′a(H ◦ fa)

]
◦ Fa)

]
= 0.

From uniqueness of the Toeplitz operators on the Bergman space H2(U)
of the unit disc, ϕ ◦ Fa = 0. Hence ϕ = 0 and we are done.

In order to prove the uniqueness for multiply connected domains,
we need the following observations which were proved in [Bel90a] and
[Bel92]. Suppose that Ω is a bounded domain with C∞ smooth bound-
ary. The classical Green’s operator G is the operator on C∞(Ω) which
solves the following Dirichlet problem: given ψ ∈ C∞(Ω),

∆(G(ψ)) = ψ

under the boundary condition G(ψ) = 0 on bΩ. The Bergman projection
is related to the Green’s operator via Spencer’s formula

(4.1) BΩ(ψ) = ψ − 4
∂

∂z
G

(
∂

∂z
ψ

)
.

(see [Bel90a]). In particular, the operator G maps C∞(Ω) into itself.
The Bergman kernel function KΩ(z, w) is related to the Green function
g(z, w) via

KΩ(z, w) = − 2

π

∂2g(z, w)

∂z∂w
.

On the other hand, the supplemental function ΛΩ(z, w) defined by

ΛΩ(z, w) = − 2

π

∂2g(z, w)

∂z∂w
.

is holomorphic in z and w and is in C∞(Ω × Ω − {(z, z) : z ∈ Ω}).
For fixed w0 ∈ Ω, ΛΩ(z, w0) has a double pole at w0 with principal part

− 1

π

1

(z − w0)2
and ΛΩ(z, w) = ΛΩ(w, z) for z 6= w. The two functions

KΩ(z, w) and ΛΩ(z, w) satisfy the identity

(4.2) ΛΩ(w, z)T (z) = −KΩ(w, z)T (z), w ∈ Ω, z ∈ bΩ.

(see [Bel92] and [Ber50]).
Now we are ready to prove the following theorem.

Theorem 4.3. Suppose that Ω is a C∞ smoothly bounded domain
in the plane and let ϕ ∈ C∞( Ω ). Suppose the Toeplitz operator BTΩ

ϕ
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on the Bergman space H2(Ω) is the zero operator. Then ϕ vanishes on
Ω.

Proof. Assume that ϕ ∈ C∞(Ω) and BTΩ
ϕ = 0 on H2(Ω). Fix a ∈ Ω.

Applying the identity (4.1) with the function ψ(z) = ϕ(z)KΩ(z, a), we
get

0 = BΩ(ϕKΩ(z, a)) = ϕ(z)KΩ(z, a)− ∂

∂z
G

(
∂

∂z
[ϕKΩ(z, a)]

)
.

It follows that

(4.3) ϕ(z)KΩ(z, a) =
∂

∂z
G

(
∂

∂z
(ϕ(z)KΩ(z, a))

)
.

On the other hand, by the identities (4.2) and (2.4), we obtain that for
z ∈ bΩ

KΩ(z, a) = KΩ(a, z) = −ΛΩ(a, z) T (z)
2

= −ΛΩ(a, z)

(
L(z, a)

iS(z, a)

)2

= ΛΩ(a, z)

(
L(z, a)

S(z, a)

)2

.

Substituting the last identity with KΩ(z, a) in (4.3), we have

(4.4) ϕ(z)L(z, a)2

(
ΛΩ(a, z)

S(z, a)2

)
=

∂

∂z
G

(
∂

∂z
[ϕ(z)KΩ(z, a)]

)
.

The right hand side of (4.4) is holomorphic in z ∈ Ω which extends C∞

smoothly to the boundary of Ω. However, the function

L(z, a)2

(
ΛΩ(a, z)

S(z, a)2

)
in the left hand side of (4.4) has singularity at z = a as a double pole
holomorphically and as a double pole antiholomorphically. Hence by
letting z tend to a, we obtain ϕ(a) = 0 and since the point a is arbitrary
given, the proof is finished.

5. Commuting properties of Toeplitz operators on Hardy
spaces

In this section, we study on commuting properties of Toeplitz oper-
ators on Hardy spaces of general domains and find a generalization of
the result of the unit disc case.
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Theorem 5.1. Suppose that Ω is a C∞ smoothly bounded simply
connected domain and let ϕ,ψ ∈ L∞(bΩ). Let a ∈ Ω be fixed and
let fa be the Riemann mapping function associated to the pair (Ω, a).
Suppose the Toeplitz operators HTΩ

ϕ and HTΩ
ψ with symbols ϕ and ψ on

the Hardy space H2(bΩ) commute. Then the Toeplitz operators HTUϕ◦Fa
and HTUψ◦Fa with symbols ϕ◦Fa and ψ ◦Fa on the Hardy space H2(bU)
of the unit disc U commute where Fa is the inverse of fa.

Proof. Assume that for all h ∈ H2(bΩ), HTΩ
ϕ HTΩ

ψ (h) = HTΩ
ψ HTΩ

ϕ (h)

and let H ∈ H2(bU). It follows from the change of variables that√
f ′a(H ◦ fa) ∈ H2(bΩ). Thus by using the transformation formula

(3.1), we obtain

HTUϕ◦FaHT
U
ψ◦Fa(H)

= HTUϕ◦FaHT
U
ψ◦Fa

(√
F ′a

([√
f ′a(H ◦ fa)

]
◦ Fa

))
= HTUϕ◦Fa

(√
F ′a

(
HTΩ

ψ

[√
f ′a(H ◦ fa)

]
◦ Fa

))
=
√
F ′a

[(
HTΩ

ϕHT
Ω
ψ

[√
f ′a(H ◦ fa)

])
◦ Fa

]
=
√
F ′a

[(
HTΩ

ψHT
Ω
ϕ

[√
f ′a(H ◦ fa)

])
◦ Fa

]
= HTUψ◦Fa

[√
F ′a

(
HTΩ

ϕ

[√
f ′a(H ◦ fa)

]
◦ Fa

)]
= HTUψ◦FaHT

U
ϕ◦Fa

[√
F ′a

([√
f ′a(H ◦ fa)

]
◦ Fa

)]
= HTUψ◦FaHT

U
ϕ◦Fa(H),

(5.1)

which proves the commuting property of HTUϕ◦Fa and HTUψ◦Fa .

It is well known(see [BH64]) that if the Toeplitz operators HTUϕ and

HTUφ on the Hardy space H2(bU) commute, either both ϕ and ψ are
analytic or both ϕ and ψ are co-analytic or aϕ+ bψ is constant for some
constants a and b not both 0. Now we can generalize the result to simply
connected domains in the plane.

Corollary 5.2. Suppose that Ω is a bounded simply connected do-
main and let ϕ,ψ ∈ L∞(bΩ). Suppose the Toeplitz operators HTΩ

ϕ and

HTΩ
ψ on the Hardy space H2(bΩ) commute. Then either both ϕ and ψ

are analytic or both ϕ and ψ are co-analytic or aϕ+ bψ is constant for
some constants a and b not both 0.
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Proof. Suppose that HTΩ
ϕ and HTΩ

φ on the Hardy space H2(bΩ) com-

mute. Then from Theorem 5.1 it follows that HTUϕ◦Fa and HTUψ◦Fa com-
mute. By the result for the case of the unit circle, either both ϕ ◦ Fa
and ψ ◦ Fa are analytic or both ϕ ◦ Fa and ψ ◦ Fa are co-analytic or
a(ϕ ◦ Fa) + b(ψ ◦ Fa) is constant for some constants a and b not both 0.
But ϕ = (ϕ◦Fa)◦fa, ψ = (ψ◦Fa)◦fa and ϕ = (ϕ◦Fa)◦fa, ψ = (ψ◦Fa)◦fa,
which implies that the statements of Corollary 5.2 hold.

For multiply connected domains, we have the following necessary con-
dition.

Theorem 5.3. Suppose that Ω is a C∞ smoothly bounded connected
domain and let PΩ be the Szegő projection of Ω. Let ϕ,ψ ∈ L∞(bΩ).
Suppose the Toeplitz operators HTΩ

ϕ and HTΩ
ψ on the Hardy space

H2(bΩ) commute. Then for all h ∈ H2(bΩ),

PΩ

(
PΩ(ϕ)PΩ

(
T PΩ(ψT ) h

))
− PΩ

(
PΩ(ψ)PΩ

(
T PΩ(ϕT ) h

))
+ PΩ

(
T PΩ(ϕT )PΩ(ψ)h

)
− PΩ

(
T PΩ(ψT )PΩ(ϕ)h

)
+ PΩ

(
T PΩ(ϕT ) PΩ

(
T PΩ(ψT )h

))
− PΩ

(
T PΩ(ψT ) PΩ

(
T PΩ(ϕT )h

))
= 0.

(5.2)

Proof. This is straightforward from the identity (2.2) by letting

ϕ = PΩ(ϕ) + TPΩ(ϕT )

and

ψ = PΩ(ψ) + TPΩ(ψT )

and by factoring out.

Corollary 5.4. Suppose that Ω is a C∞ smoothly bounded con-
nected domain and let PΩ be the Szegő projection of Ω. Let ϕ,ψ ∈
L∞(bΩ). Suppose the Toeplitz operators HTΩ

ϕ and HTΩ
ψ on the Hardy

space H2(bΩ) commute. Then we have the identity

(5.3) PΩ

(
T PΩ(ϕT )PΩ(ψ)

)
= PΩ

(
T PΩ(ψT )PΩ(ϕ)

)
.

Proof. We substitute f = 1 into the left hand side of the identity
(5.2). Then it follows that all terms except the third and fourth ones
vanish because the forms T H where H is in H2(bΩ) are orthogonal to
H2(bΩ) and hence we are done.
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S. Axler, Ž. Čučković and N. V. Rao[AČR00] proved that for a
bounded domain Ω, if ϕ is a nonconstant bounded analytic function
and if ψ is in L∞(Ω) such that Toeplitz operators BTΩ

ϕ and BTΩ
ψ on

Bergman spaces commute, then ψ is analytic. In the following theo-
rem we generalize the corresponding statement for Toeplitz operators
on Hardy spaces.

Theorem 5.5. Suppose that Ω is a C∞ smoothly bounded connected
domain and suppose that ϕ is a nonconstant holomorphic function in
H2(bΩ) that has no zeroes in Ω. If ψ is a function in C∞(Ω) such
that two Toeplitz operators HTΩ

ϕ and HTΩ
ψ on the Hardy space H2(bΩ)

commute, then the function ψ is a holomorphic function in H2(bΩ).

Proof. Notice that any function of the form TH where H is in H2(bΩ)
is orthogonal to H2(bΩ). It thus follows from (5.2) that for any h ∈
H2(bΩ),

PΩ

[
TPΩ(ψT )ϕh

]
= PΩ

(
ϕPΩ

[
TPΩ(ψT )h

])
.

In particular, letting h =
1

ϕ
which is holomorphic by assumption im-

plies that TPΩ(ψT )− ϕPΩ

[
TPΩ(ψT )

1

ϕ

]
is a function in H2(bΩ)⊥.

Note that the first term TPΩ(ψT ) is a function in H2(bΩ)⊥. Thus

the second term ϕPΩ

[
TPΩ(ψT )

1

ϕ

]
is a function in both H2(bΩ) and

H2(bΩ)⊥, which implies from the non-vanishing property of ϕ that

PΩ

[
TPΩ(ψT )

1

ϕ

]
= 0.

It is known (see [Bel90b]) that any v ∈ L2(bΩ) which is orthogonal
to H2(bΩ) is of the form v = T H for some H ∈ H2(bΩ). In fact, the
function H is given by H = C(v T ) where C is the Cauchy transform
defined by

(Cu)(z) =
1

2πi

∫
bΩ

u(ζ)

ζ − z
dζ

for u ∈ C∞(bΩ). Thus there exists a function H ∈ H2(bΩ) such that

TPΩ(ψT )
1

ϕ
= TH.

If the holomorphic function PΩ(ψT ) has a non-zero point z0 in Ω, then

the holomorphic function
1

ϕ
is equal to the anti-holomorphic function
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H

PΩ(ψT )

]
in a neighborhood of z0 which implies that

1

ϕ
is constant

which contradicts the assumption of ϕ.
Therefore the holomorphic function PΩ(ψT ) is the zero function and

hence the symbol ψ is a holomorphic function in H2(bΩ).

6. Commuting properties of Toeplitz operators on Bergman
spaces

In this final section, we study on commuting properties for Toeplitz
operators on Bergman spaces according to the same procedure of the
previous section.

Theorem 6.1. Suppose that Ω is a bounded simply connected do-
main with C∞ smooth boundary and let ϕ,ψ ∈ L∞(Ω). Let a ∈ Ω be
fixed and let fa be the Riemann mapping function associated to the pair
(Ω, a). Suppose the Toeplitz operators BTΩ

ϕ and BTΩ
ψ on the Bergman

space H2(Ω) commute. Then the Toeplitz operators BTUϕ◦Fa and BTUψ◦Fa
on the Bergman space H2(U) commute where Fa is the inverse of fa.

Proof. Suppose that for all h ∈ H2(Ω), BTΩ
ϕ BTΩ

ψ (h) = BTΩ
ψ BTΩ

ϕ (h).

Let H ∈ H2(U). It follows from the change of variables that f ′a(H◦fa) ∈
H2(Ω). Thus by using the transformation formula (3.2), we obtain

BTUϕ◦FaBT
U
ψ◦Fa(H)

= BTUϕ◦FaBT
U
ψ◦Fa

[
F ′a
([
f ′a(H ◦ fa)

]
◦ Fa

)]
= BTUϕ◦Fa

[
F ′a

(
BTΩ

ψ

[
f ′a(H ◦ fa)

]
◦ Fa

)]
= F ′a

[(
BTΩ

ϕ BT
Ω
ψ

[
f ′a(H ◦ fa)

])
◦ Fa

]
= F ′a

[(
BTΩ

ψ BT
Ω
ϕ

[
f ′a(H ◦ fa)

])
◦ Fa

]
= BTUψ◦Fa

[
F ′a

(
BTΩ

ϕ

[
f ′a(H ◦ fa)

]
◦ Fa

)]
= BTUψ◦FaBT

U
ϕ◦Fa

[
F ′a
([
f ′a(H ◦ fa)

]
◦ Fa

)]
= BTUψ◦FaBT

U
ϕ◦Fa(H),

(6.1)

which proves the commuting property of BTUϕ◦Fa and BTUψ◦Fa .

Therefore like S. Axler and Ž. Čučković[AČ91] solved a commuting
problem of two Toeplitz operators on Bergman spaces with bounded
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harmonic symbols for the unit disc case, we obtain an immediate result
for simply connected domains as follows.

Corollary 6.2. Suppose that Ω is a bounded simply connected do-
main. Suppose the Toeplitz operators BTΩ

ϕ and BTΩ
ψ on the Bergman

space H2(Ω) with bounded harmonic symbols ϕ,ψ commute. Then ei-
ther both ϕ and ψ are analytic or both ϕ and ψ are co-analytic or aϕ+bψ
is constant for some constants a and b not both 0.

For the case of multiply connected domains, the commuting proper-
ties of Toeplitz operators on Bergman spaces are related to the classical
Green’s operator as follows.

Theorem 6.3. Suppose that Ω is a C∞ smoothly bounded connected
domain and let G be the classical Green’s operator. Let ϕ,ψ ∈ C∞(Ω).
Suppose the Toeplitz operators BTΩ

ϕ and BTΩ
ψ on the Bergman space

H2(Ω) commute. Then for all h ∈ H2(Ω),

BΩ

(
BΩ(ϕ)BΩ

(
h
∂

∂z
G

(
∂ψ

∂z

)))
−BΩ

(
BΩ(ψ)BΩ

(
h
∂

∂z
G

(
∂ϕ

∂z

)))
+ BΩ

(
h BΩ(ψ)

∂

∂z
G

(
∂ϕ

∂z

))
−BΩ

(
h BΩ(ϕ)

∂

∂z
G

(
∂ψ

∂z

))
+ 4 ·BΩ

(
∂

∂z
G

(
∂ϕ

∂z

)
BΩ

(
h
∂

∂z
G

(
∂ψ

∂z

)))
− 4 ·BΩ

(
∂

∂z
G

(
∂ψ

∂z

)
BΩ

(
h
∂

∂z
G

(
∂ϕ

∂z

)))
= 0.

(6.2)

Proof. This is done from Spencer’s formula (4.1) by letting

ϕ = BΩ(ϕ) + 4
∂

∂z
G

(
∂

∂z
ϕ

)
and

ψ = BΩ(ψ) + 4
∂

∂z
G

(
∂

∂z
ψ

)
.
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and by factoring out. In fact, one side of the identity BTϕBTψ(h) =
BTψBTϕ(h) is read off as follows.

BTϕBTψ(h) = BΩ {ϕBΩ(ψh)}

= BΩ

[(
BΩ(ϕ) + 4

∂

∂z
G

(
∂

∂z
ϕ

))
BΩ

{(
BΩ(ψ) + 4h

∂

∂z
G

(
∂

∂z
ψ

))}]
= BΩ [BΩ(ϕ)BΩ {BΩ(ψ)h}] + 4BΩ

[
BΩ(ϕ)BΩ

{
h
∂

∂z
G

(
∂

∂z
ψ

)}]
+ 4BΩ

[
∂

∂z
G

(
∂

∂z
ϕ

)
{BΩ(ψ)h}

]
+ 16BΩ

[
∂

∂z
G

(
∂

∂z
ϕ

)
BΩ

{
h
∂

∂z
G

(
∂

∂z
ψ

)}]
.

Notice that the first term of the above identity is equal toBΩ {BΩ(ϕ)BΩ(ψ)h}
because the function BΩ(ψ)h is holomorphic.

Corollary 6.4. Suppose that Ω is a C∞ smoothly bounded con-
nected domain and let BΩ be the Bergman projection of Ω and G be
the classical Green’s operator. Let ϕ,ψ ∈ C∞(Ω). Suppose the Toeplitz
operators BTΩ

ϕ and BTΩ
ψ on the Bergman space H2(Ω) commute. Then

(6.3) BΩ

(
BΩ(ψ)

∂

∂z
G

(
∂ϕ

∂z

))
= BΩ

(
BΩ(ϕ)

∂

∂z
G

(
∂ψ

∂z

))
Proof. Substituting f = 1 into the identity (6.2), we obtain only

the third and the fourth terms (of possibly nonvanishing) because for

any function Φ in C∞(Ω) that vanishes on the boundary of Ω,
∂Φ

∂z
is

orthogonal to H2(Ω) by virtue of the Green’s identity and hence we are
done.
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[Bel91b] , The Szegő projection and the classical objects of potential theory in
the plane, Duke Math. J. 64 (1991), no. 1, 1–26.

[Bel92] Steven R. Bell, The Cauchy transform, potential theory, and conformal map-
ping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[Bel99] , Ahlfors maps, the double of a domain, and complexity in potential
theory and conformal mapping, J. Anal. Math. 78 (1999), 329–344.

[Ber50] S. Bergman, The Kernel Function and Conformal Mapping, Mathematical
Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950.

[BH64] Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators,
J. Reine Angew. Math. 213 (1963/1964), 89–102.

[Chua] Y.-B. Chung, Classification of toeplitz operators on hardy spaces of bounded
domains in the plane, Math. Notes (to appear).

[Chub] , Matrices of toeplitz operators on hardy spaces over bounded do-
mains, Bull. Korean Math. Soc. (to appear).

[Chuc] , Special orthonormal basis for l2 functions on the unit circle, Bull.
Korean Math. Soc. (to appear).

[Chu09] Young-Bok Chung, Uniqueness of Toeplitz operator in the complex plane,
Honam Math. J. 31 (2009), no. 4, 633–637.

[Gar49] P. R. Garabedian, Schwarz’s lemma and the Szegő kernel function, Trans.
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