Acknowledgement
Supported by : University of Incheon
References
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integr. Equat. Oper. Theor. 13 (1990), 307-315. https://doi.org/10.1007/BF01199886
- T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169-178.
- M. Cho Spectral properties of p-hyponormal operators, Glasgow Math. J. 36 (1994), 117-122. https://doi.org/10.1017/S0017089500030627
- J. B. Conway, B. B. Morrel, Operators that are points of spectral continuity, Integr. Equat. Oper. Theor. 2 (1979), 174-198. https://doi.org/10.1007/BF01682733
- M. Cho, K. Tanahashi Isolated point of spectrum of p-hyponormal, log-hyponormal operator, Integr. Equat. Oper. Theor. 43 (2002), 379-384. https://doi.org/10.1007/BF01212700
- M. Cho and T. Yamazaki An operator transform from class A to the class of hyponormal operators and its application, Integr. Equat. Oper. Theor. 53 (2005), 497-508 https://doi.org/10.1007/s00020-004-1332-6
- B. P. Duggal, Tensor products of operators - strong stability and p-hyponormality, Glasgow Math. J. 42 (2000), 371-381. https://doi.org/10.1017/S0017089500030068
- D. R. Farenick, W.Y. Lee Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174. https://doi.org/10.1090/S0002-9947-96-01683-2
- T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001.
- T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403.
- P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1982.
- I. S. Hwang, W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), 151-157. https://doi.org/10.1007/s002090000128
- Jin-chuan Hou, On tensor products of operators, Acta Math. Sinica (N.S.) 9 (1993), 195-202. https://doi.org/10.1007/BF02560050
- I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, Jour. Korean Math. Soc. 41 (2004), 617-627. https://doi.org/10.4134/JKMS.2004.41.4.617
- I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. and Appl. 7 (2004), 629-638.
-
C. A. McCarthy,
${c_{p}}$ , Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613 - J. D. Newburgh, The variation of spectra, Duke. Math. J. 18 (1951), 165-176. https://doi.org/10.1215/S0012-7094-51-01813-3
- T. Saito, Hyponormal Operators and Related Topics, Lecture Notes in Mathematics, 247, Springer-Verlag (1971).
- J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. https://doi.org/10.1090/S0002-9947-1965-0173161-3
- J. Stochel, Seminormality of operators from their tensor products, Proc. Amer. Math. Soc. 124 (1996), 435-440.
- A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), 143-150.
- A. Uchiyama and K. Tanahashi, On the Riesz idempotent of class A operators, Math. Inequal. Appl. 5 (2002), 291-298.