
Bull. Korean Math. Soc. 61 (2024), No. 1, pp. 207–216

https://doi.org/10.4134/BKMS.b230073

pISSN: 1015-8634 / eISSN: 2234-3016

A NOTE ON VARIATION CONTINUITY FOR MULTILINEAR

MAXIMAL OPERATORS

Xiao Zhang

Abstract. This note is devoted to establishing the variation continuity

of the one-dimensional discrete uncentered multilinear maximal operator.
The above result is based on some refine variation estimates of the above

maximal functions on monotone intervals. The main result essentially
improves some known ones.

1. Introduction

An active topic of current research is to study the regularity properties of
maximal operators. The first work was due to Kinnunen [13] who observed that
the centered Hardy–Littlewood maximal operator M is bounded on the Sobolev
spaces W 1,p(Rn) for all 1 < p ≤ ∞. The same boundedness also holds for the

uncentered Hardy–Littlewood maximal operator M̃ by a simple modification
of Kinnunen’s arguments or [12, Theorem 1]. Subsequently, more and more
authors are devoted to extending Kinnunen’s result to various versions (see,
e.g., [8, 10,14,15,23,24]). Since M is not necessary sublinear at the derivative
level, the continuity of M : W 1,p(Rn) → W 1,p(Rn) for p > 1 is certainly a
nontrivial question. This question was first posed in [12, Question 3], where it
was attributed to Iwaniec and was addressed by Luiro in [20]. Some extensions
of the above continuity result can be found in [8, 21, 25, 28–31]. Due to the
unboundedness of M : L1(R) → L1(R), understanding the endpoint Sobolev
regularity seems to be a deeper issue. A crucial question was posed by Haj lasz
and Onninen in [12]:

Question 1.1 ([12]). Is the map f 7→ |∇Mf | bounded from W 1,1(Rn) to
L1(Rn)?

In 2002, Tanaka [26] firstly established that M̃f is weakly differentiable and

(1.1) ∥(M̃f)′∥L1(R) ≤ 2∥f ′∥L1(R),
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if f ∈ W 1,1(R). Later on, Aldaz and Pérez Lázaro [1] improved the above

result by showing that M̃f is absolutely continuous and

(1.2) Var
(
M̃f

)
≤ Var(f),

under the condition that f ∈ BV(R). Here Var(f) denotes here the total
variation of f and BV(R) is the set of all functions f : R → R with ∥f∥BV(R) :=
Var(f) < ∞. As a direct application of (1.2), the bound (1.1) can be improved
by

(1.3) ∥(M̃f)′∥L1(R) ≤ ∥f ′∥L1(R)

if f ∈ W 1,1(R) (see also [17]). It should be pointed out that both the bounds
(1.2) and (1.3) are sharp. Recently, Kurka [16] established the bounds (1.2)
and (1.3) for M (with C = 240, 004). Other extensions related to the above
results are [2,6,9,18]. Recently, the endpoint Sobolev and variation continuity
of maximal operators has also been studied by many authors. This topic was
first investigated by Carneiro, Madrid and Pierce [7] who showed that, among

other things, the map f 7→ (M̃f)′ is continuous from W 1,1(R) to L1(R). Note
that BV(R) is not a Banach space. In order to study the variation continuity of

maximal operators, the authors of [7] introduced the space B̃V(R) of functions
f : R → R of bounded total variation, which is a Banach space with the norm

∥f∥
B̃V(R) = |f(−∞)| + Var(f),

where f(−∞) := limx→−∞ f(x). In [7], the authors also pointed out that the

map M̃ : B̃V(R) → B̃V(R) is bounded. It is natural to ask whether the map

M̃ : B̃V(R) → B̃V(R) is continuous. This was asked by Carneiro, Madrid and
Pierce [7] and was answered by González-Riquelme and Kosz [11].

On the other hand, the endpoint regularity properties of discrete maximal
operators have also gotten a mount of attention (see [3, 5, 6, 19, 22, 27, 32] et
al.). Before presenting some backgrounds, let us introduce some notation and
definitions. Let 1 ≤ p ≤ ∞. For a discrete function f : Z → R we define its
ℓp-norm as usual:

∥f∥ℓp(Z) =


(∑

n∈Z
|f(n)|p

)1/p

, if 1 ≤ p < ∞;

sup
n∈Z

|f(n)|, if p = +∞.

We also define the first derivative of f by

f ′(n) = f(n + 1) − f(n), n ∈ Z.

The total variation of f : Z → R is defined as

Var(f) :=
∑
n∈Z

|f(n + 1) − f(n)| = ∥f ′∥ℓ1(Z).

We denote by BV(Z) the set of all f : Z → R with Var(f) < ∞.
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Let N = {0, 1, . . . , } and m ∈ N \ {0}. Let f⃗ = (f1, . . . , fm) with each
fj : Z → R being a discrete function. We consider the discrete uncentered
m-sublinear maximal operator

M̃(f⃗)(n) = sup
r,s∈N

1

(r + s + 1)m

m∏
j=1

s∑
k=−r

|fj(n + k)|, n ∈ Z.

Clearly, when m = 1, the operator M̃ reduces to the one-dimensional discrete

uncentered Hardy-Littlewood maximal operator M̃ .
The regularity properties of maximal operators in the discrete setting were

first studied by Bober et al. [3] who proved that

Var(M̃f) ≤ Var(f),

if f ∈ BV(Z). Later on, the above result was extended to a centered version in
[27], to a fractional version in [6] and to a multilinear version in [32]. In order to
establish the variation continuity of discrete maximal operator, the authors of
[7] introduced the space of discrete functions of bounded total variation, which

is denoted by B̃V(Z) and is a Banach space with the norm

∥f∥
B̃V(Z) = |f(−∞)| + Var(f),

where f(−∞) := limn→−∞ f(n). It is clear that

(1.4) ∥f∥ℓ∞(Z) ≤ ∥f∥
B̃V(Z) ≤ 3∥f∥ℓ1(Z),

(1.5) ℓ1(Z) ⊂ B̃V(Z) ⊂ BV(Z) ⊂ ℓ∞(Z),

which are proper inclusions. In [7], the authors showed that the map M̃ :

B̃V(Z) → B̃V(Z) is bounded and continuous.
Very recently, Zhang [32] established the following result.

Theorem A ([32]). (i) The map M̃ : B̃V(Z) × · · · × B̃V(Z) → BV(Z) is
bounded.

(ii) The map M̃ : ℓ1(Z) × · · · × ℓ1(Z) → BV(Z) is continuous.

Based on Theorem A and (1.5), it is natural to ask the following:

Question 1.2. Is the map M̃ : B̃V(Z) × · · · × B̃V(Z) → BV(Z) continuous?

This is the main motivation of this note. A positive answer for Question 1.2
can be shown by the following:

Theorem 1.3. The map M̃ : B̃V(Z) × · · · × B̃V(Z) → BV(Z) is continuous.

Remark 1.4. (i) Theorem 1.3 improves the continuity result in Theorem A
because of (1.5).

(ii) It is unknown whether the map M̃ : B̃V(Z) × · · · × B̃V(Z) → B̃V(Z)
is bounded and continuous. In fact, by Theorem 1.3, the above continuity

question can be reduced to show that limj→∞ M̃(f⃗j)(−∞) = M̃(f⃗)(−∞) if
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f⃗ = (f1, . . . , fm) with each fj ∈ B̃V(Z) and f⃗i = (f1,i, . . . , fm,i) with each

fj,i → fj in B̃V(Z) as i → ∞ for all 1 ≤ j ≤ m.

The rest of the paper is organized as follows. In Section 2 we present the
proof of Theorem 1.3. We would like to remark that the main idea in the proof
of Theorem 1.3 is motivated by [7, 32]. The main ingredient of the proof of
Theorem 1.3 is the variation bounds of the multilinear maximal functions on
monotone intervals (see Lemma 2.2). In addition, Theorem 1.3 provides an
application of the classical Brezis–Lieb lemma [4]. Throughout this paper, we
use the conventions

∏
j∈∅ aj = 1 and

∑
j∈∅ aj = 0.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. For convenience, given an interval

[a, b] ⊂ Z, we denote ∥f∥ℓ1([a,b]) =
∑b

n=a |f(n)| and

Var(f ; [a, b]) = ∥f ′∥ℓ1([a,b−1]) =

b−1∑
n=a

|f(n + 1) − f(n)|

for the variation of f on the interval [a, b].
The following is a simple observation, which plays a key role in our proof.

Lemma 2.1. Let f⃗ = (f1, . . . , fm) with each fj ∈ ℓ∞(Z). For i ≥ 1 let

f⃗i = (f1,i, . . . , fm,i), where {fj,i}1≤j≤m,i≥1 ⊂ ℓ∞(Z) and fj,i → fj in ℓ∞(Z) as

i → ∞. Then M̃(f⃗i)(n) → M̃(f⃗)(n) uniformly for n ∈ Z.

Proof. Given ϵ ∈ (0, 1) there exists a positive integer N such that

∥fj,i − fj∥ℓ∞(Z) < ϵ and ∥fj,i∥ℓ∞(Z) ≤ ∥fj∥ℓ∞(Z) + 1

for any 1 ≤ j ≤ m and i ≥ N . By the definition of M̃(f⃗), we have that for any
n ∈ Z and i ≥ N ,

|M̃(f⃗i)(n) − M̃(f⃗)(n)|

≤ sup
r,s∈N

1

(r + s + 1)m

∣∣∣ m∏
j=1

s∑
k=−r

|fj,i(n + k)| −
m∏
j=1

s∑
k=−r

|fj(n + k)|
∣∣∣

≤ sup
r,s∈N

1

(r + s + 1)m

m∑
l=1

( s∑
k=−r

|fl,i(n + k) − fl(n + k)|
)

×
( l−1∏

µ=1

s∑
k=−r

|fµ(n + k)|
)( m∏

ν=l+1

s∑
k=−r

|fν,i(n + k)|
)

≤
m∑
l=1

∥fl,i − fl∥ℓ∞(Z)

l−1∏
µ=1

∥fµ∥ℓ∞(Z)

m∏
ν=l+1

∥fν,i∥ℓ∞(Z)

≤
m∑
l=1

∏
1≤µ≤m,

µ̸=l

(∥fµ∥ℓ∞(Z) + 1)ϵ,
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which yields the conclusion of Lemma 2.1. □

The following result is the main ingredient of the proof of Theorem 1.3.

Lemma 2.2. ([32]) Let f⃗ = (f1, . . . , fm) with each fj ∈ B̃V(Z) such that M̃(f⃗)

is non-constant (in particular, M̃(f⃗) ̸≡ ∞) and a, b be two integers such that
a < b.

(i) If M̃(f⃗) is non-decreasing in [a, b] and M̃(f⃗)(b−1) < M̃(f⃗)(b), then there
exists s ∈ N such that s < b− a and

b−1∑
n=a

|M̃(f⃗)(n + 1) − M̃(f⃗)(n)| ≤ 2
( m∑

l=1

∏
1≤j≤m

j ̸=l

∥fj∥ℓ∞(Z)Var(fl; [a, b + s])
)
.

(ii) If M̃(f⃗) is non-increasing in [a, b] and M̃(f⃗)(a) > M̃(f⃗)(a + 1), then
there exists r ∈ N such that r < b− a and

b−1∑
n=a

|M̃(f⃗)(n + 1) − M̃(f⃗)(n)| ≤ 2
( m∑

l=1

∏
1≤j≤m

j ̸=l

∥fj∥ℓ∞(Z)Var(fl; [a− r, b])
)
.

In order to prove Theorem 1.3, the following definition is very useful.

Definition. For a discrete function g : Z → R we say that an interval [n, l] is
a string of local maxima of g if

g(n− 1) < g(n) = · · · = g(l) > g(l + 1).

If n = −∞ or l = +∞ (but not both simultaneously) we modify the definition
accordingly, eliminating one of the inequalities. If n = l, we set [n, l] = {n}.
The rightmost point l of such a string is a right local maximum of g, while the
leftmost point n is a left local maximum of g. We define string of local minima,
right local minimum and left local minimum analogously.

We now present the proof of Theorem 1.3.

Proof of Theorem 1.3. Let f⃗ = (f1, . . . , fm) with each fj ∈ B̃V(Z). For i ≥ 1

let f⃗i = (f1,i, . . . , fm,i), where {fj,i}1≤j≤m,i≥1 ⊂ B̃V(Z) and fj,i → fj in B̃V(Z)
as i → ∞. It suffices to show that

(2.1) ∥(M̃(f⃗i) − M̃(f⃗))′∥ℓ1(Z) → 0.

By Theorem A we see that (M̃(f⃗))′ ∈ ℓ1(Z) and {(M̃(f⃗i))
′}i≥1 ⊂ ℓ1(Z). From

Lemma 2.1 we know that M̃(f⃗i)(n) → M̃(f⃗)(n) uniformly for n ∈ Z. It follows
that

(2.2) (M̃(f⃗i))
′(n) → (M̃(f⃗))′(n) as i → ∞

uniformly for n ∈ Z. By the classical Brezis–Lieb lemma [4], for (2.1) it is
enough to show that

(2.3) lim
i→∞

∥(M̃(f⃗i))
′∥ℓ1(Z) = ∥(M̃(f⃗))′∥ℓ1(Z).
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We now prove (2.3). By (2.2) and Fatou’s lemma, we have

∥(M̃(f⃗))′∥ℓ1(Z) ≤ lim inf
i→∞

∥(M̃(f⃗i))
′∥ℓ1(Z).

Hence, for (2.3) it suffices to prove

(2.4) lim sup
i→∞

∥(M̃(f⃗i))
′∥ℓ1(Z) ≤ ∥(M̃(f⃗))′∥ℓ1(Z).

Let ϵ ∈ (0, 1). There exists a lager positive integer L > 0 such that

(2.5) max
1≤j≤m

∥f ′
j∥ℓ1((−∞,−L)∪[L,∞)) < ϵ.

By (2.2), there exists N1 = N1(ϵ, f⃗) > 0 such that

(2.6) |M̃(f⃗i)(n) − M̃(f⃗)(n)| + |(M̃(f⃗i) − M̃(f⃗))′(n)| < ϵ

2L + 1

for any n ∈ Z and i ≥ N1. Then we get from (2.6) that

(2.7) ∥(M̃(f⃗i) − M̃(f⃗))′∥ℓ1([−L,L]) < ϵ

for any i ≥ N1. We can write

∥(M̃(f⃗i))
′∥ℓ1(Z) = ∥(M̃(f⃗i))

′∥ℓ1([−L,L]) + ∥(M̃(f⃗i))
′∥ℓ1((−∞,−L]∪[L,∞)).

By (2.7), we have

∥(M̃(f⃗i))
′∥ℓ1([−L,L])

≤ ∥(M̃(f⃗i) − M̃(f⃗))′∥ℓ1([−L,L]) + ∥(M̃(f⃗))′∥ℓ1([−L,L]) ≤ ϵ + ∥(M̃(f⃗))′∥ℓ1(Z)
for any i ≥ N1. Hence, for (2.4) it suffices to show that

(2.8) ∥(M̃(f⃗i))
′∥ℓ1((−∞,−L]∪[L,∞)) → 0 as i → ∞.

In order to prove (2.8), we only prove that

(2.9) ∥(M̃(f⃗i))
′∥ℓ1([L,∞)) → 0 as i → ∞

since

∥(M̃(f⃗i))
′∥ℓ1((−∞,−L]) → 0 as i → ∞

can be proved similarly.
We now prove (2.9). By (1.4) and our assumption, there exist a constant

C > 0 and a positive integer N2 such that

(2.10) ∥fj,i∥ℓ∞(Z) < C, ∀i ≥ 1 and 1 ≤ j ≤ m

and

(2.11) Var(fj,i − fj) < ϵ, ∀i ≥ N2.

Let us fix i ≥ max{N1, N2}. Let {[a−j , a
+
j ]}j∈Z and {[b−j , b

+
j ]}j∈Z be the

ordered strings of local minima and local maxima of M̃(f⃗i) (we allow the pos-
sibilities of a−j or b−j equal to −∞ and a+j or b+j equal to +∞ ), i.e.,

· · · < a−−1 ≤ a+−1 < b−−1 ≤ b+−1 < a−0 ≤ a+0 < b−0 ≤ b+0 < a−1 ≤ a+1 < b−1 ≤ b+1 < · · · .
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Without loss of generality we may assume that the sequence doesn’t termi-
nate in both sides (since other cases can be obtained similarly). Clearly,

M̃(f⃗i)(b
−
j ) > max{M̃(f⃗i)(b

−
j −1), M̃(f⃗i)(a

−
j+1)}, M̃(f⃗i)(b

+
j ) > max{M̃(f⃗i)(b

+
j +

1), M̃(f⃗i)(a
+
j )}, M̃(f⃗i) is non-decreasing in [a+j , b

−
j ] and M̃(f⃗i) is non-increasing

in [b+j , a
−
j+1]. For any j ∈ Z, invoking Lemma 2.2, there exist rj , sj ∈ N such

that sj < a−j+1 − b−j , rj < b+j − a+j and

(2.12)

a−
j+1−1∑
n=b+j

|M̃(f⃗i)(n + 1) − M̃(f⃗i)(n)|

≤ 2

m∑
l=1

∏
1≤µ≤m

µ̸=l

∥fµ,i∥ℓ∞(Z)Var(fl,i; [b+j − rj , a
−
j+1]),

(2.13)

b−j −1∑
n=a+

j

|M̃(f⃗i)(n + 1) − M̃(f⃗i)(n)|

≤ 2

m∑
l=1

∏
1≤µ≤m

µ̸=l

∥fµ,i∥ℓ∞(Z)Var(fl,i; [a+j , b
−
j + sj ]).

It follows from (2.12) and (2.13) that

(2.14)

a+
j+1−1∑
n=a+

j

|M̃(f⃗)(n + 1) − M̃(f⃗)(n)|

≤ 4

m∑
l=1

∏
1≤µ≤m

µ̸=l

∥fµ,i∥ℓ∞(Z)Var(fl,i; [a+j , a
+
j+1]).

Without loss of generality we may assume that [a−0 , a
+
0 ] is the first string of

local minima of M̃(f⃗) on the interval [L,∞). Then the following two cases are
needed to be considered:

Case 1. ([b−−1, b
+
−1] ⊂ [L, a−0 ] is not true). In this case we have that M̃(f⃗i)

is non-increasing in [L, a−0 ]. Then we write

(2.15)

∥(M̃(f⃗i))
′∥ℓ1([L,∞)) = Var(M̃(f⃗i); [L,∞))

= M̃(f⃗i)(L) − M̃(f⃗i)(a
−
0 )

+

∞∑
j=0

a+
j+1−1∑
n=a+

j

|M̃(f⃗i)(n + 1) − M̃(f⃗i)(n)|.
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By (2.5) and (2.6), we have

(2.16)

M̃(f⃗i)(L) − M̃(f⃗i)(a
−
0 )

= M̃(f⃗i)(L) − M̃(f⃗)(L) + M̃(f⃗)(L) − M̃(f⃗)(a−0 )

+M̃(f⃗)(a−0 ) − M̃(f⃗i)(a
−
0 )

≤ 2ϵ + |M̃(f⃗)(L) − M̃(f⃗)(a−0 )|
≤ 2ϵ + Var(M̃(f⃗); [L,∞]) ≤ 3ϵ.

On the other hand, we get from (2.14), (2.5), (2.10) and (2.11) that

(2.17)

∞∑
j=0

a+
j+1−1∑
n=a+

j

|M̃(f⃗i)(n + 1) − M̃(f⃗i)(n)|

≤ 4

∞∑
j=0

m∑
l=1

∏
1≤µ≤m

µ̸=l

∥fµ,i∥ℓ∞(Z)Var(fl,i; [a+j , a
+
j+1])

≤ 4Cm−1
m∑
l=1

(Var(fl,i − fl; [L,∞)) + Var(fl; [L,∞)))

≤ 8Cm−1mϵ.

Combining (2.17) with (2.16) and (2.15) leads to

∥(M̃(f⃗i))
′∥ℓ1([L,∞)) ≤ (8Cm−1m + 3)ϵ.

This gives (2.9) in this case.

Case 2. ([b−−1, b
+
−1] ⊂ [L, a−0 ]). In this case we have that M̃(f⃗i) is non-

decreasing in [L, b−−1]. Then we have

(2.18)

∥(M̃(f⃗i))
′∥ℓ1([L,∞))

= Var(M̃(f⃗i); [L,∞))

= M̃(f⃗i)(b
−
−1) − M̃(f⃗i)(L) + M̃(f⃗i)(b

+
−1) − M̃(f⃗i)(a

−
0 )

+

∞∑
j=0

a+
j+1−1∑
n=a+

j

|M̃(f⃗i)(n + 1) − M̃(f⃗i)(n)|.

An argument similar to (2.16) gives

M̃(f⃗i)(b
−
−1) − M̃(f⃗i)(L) ≤ 3ϵ;

M̃(f⃗i)(b
+
−1) − M̃(f⃗i)(a

−
0 ) ≤ 3ϵ.

These above estimates together with (2.17) and (2.18) imply that

∥(M̃(f⃗i))
′∥ℓ1([L,∞)) ≤ (8Cm−1m + 6)ϵ.

This gives (2.9) in this case and completes the proof of Theorem 1.3. □
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