• 제목/요약/키워드: bounded operator

검색결과 279건 처리시간 0.027초

A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS IN ℂ2

  • Ha, Ly Kim
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.993-1002
    • /
    • 2017
  • Let ${\Omega}$ be a bounded, uniformly totally pseudoconvex domain in ${\mathbb{C}}^2$ with the smooth boundary b${\Omega}$. Assuming that ${\Omega}$ satisfies the negative ${\bar{\partial}}$ property. Let M be a positive, finite area divisor of ${\Omega}$. In this paper, we will prove that: if ${\Omega}$ admits a maximal type F and the ${\check{C}}eck$ cohomology class of the second order vanishes in ${\Omega}$, there is a bounded holomorphic function in ${\Omega}$ such that its zero set is M. The proof is based on the method given by Shaw [27].

WEIGHTED COMPOSITION OPERATORS ON NACHBIN SPACES WITH OPERATOR-VALUED WEIGHTS

  • Klilou, Mohammed;Oubbi, Lahbib
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1125-1140
    • /
    • 2018
  • Let A be a normed space, ${\mathcal{B}}(A)$ the algebra of all bounded operators on A, and V a family of strongly upper semicontinuous functions from a Hausdorff completely regular space X into ${\mathcal{B}}(A)$. In this paper, we investigate some properties of the weighted spaces CV (X, A) of all A-valued continuous functions f on X such that the mapping $x{\mapsto}v(x)(f(x))$ is bounded on X, for every $v{\in}V$, endowed with the topology generated by the seminorms ${\parallel}f{\parallel}v={\sup}\{{\parallel}v(x)(f(x)){\parallel},\;x{\in}X\}$. Our main purpose is to characterize continuous, bounded, and locally equicontinuous weighted composition operators between such spaces.

ON SOME PROPERTIES OF BOUNDED $X^{*}$-VALUED FUNCTIONS

  • Yoo, Bok-Dong
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제1권1호
    • /
    • pp.25-27
    • /
    • 1994
  • Suppose that X is a Banach space with continuous dual $X^{**}$, ($\Omega$, $\Sigma$, ${\mu}$) is a finite measure space. f : $\Omega\;{\longrightarrow}$ $X^{*}$ is a weakly measurable function such that $\chi$$^{**}$ f $\in$ $L_1$(${\mu}$) for each $\chi$$^{**}$ $\in$ $X^{**}$ and $T_{f}$ : $X^{**}$ \longrightarrow $L_1$(${\mu}$) is the operator defined by $T_{f}$($\chi$$^{**}$) = $\chi$$^{**}$f. In this paper we study the properties of bounded $X^{*}$ - valued weakly measurable functions and bounded $X^{*}$ - valued weak* measurable functions.(omitted)

  • PDF

A NOTE ON PROLATE SPHEROIDAL WAVE FUNCTIONS AND PROLATE FUNCTION BASED NUMERICAL INVERSION METHODS

  • Kim, Eun-Joo;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권1호
    • /
    • pp.41-53
    • /
    • 2008
  • Polynomials are one of most important and widely used numerical tools in dealing with a smooth function on a bounded domain and trigonometric functions work for smooth periodic functions. However, they are not the best choice if a function has a bounded support in space and in frequency domain. The Prolate Spheroidal wave function (PSWF) of order zero has been known as a best candidate as a basis for band-limited functions. In this paper, we review some basic properties of PSWFs defined as eigenfunctions of bounded Fourier transformation. We also propose numerical inversion schemes based on PSWF and present some numerical examples to show their feasibilities as signal processing tools.

  • PDF

TRANSLATION THEOREM FOR THE ANALYTIC FEYNMAN INTEGRAL ASSOCIATED WITH BOUNDED LINEAR OPERATORS ON ABSTRACT WIENER SPACES AND AN APPLICATION

  • Jae Gil Choi
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.1035-1050
    • /
    • 2024
  • The Cameron-Martin translation theorem describes how Wiener measure changes under translation by elements of the Cameron-Martin space in an abstract Wiener space (AWS). Translation theorems for the analytic Feynman integrals also have been established in the literature. In this article, we derive a more general translation theorem for the analytic Feynman integral associated with bounded linear operators (B.L.OP.) on AWSs. To do this, we use a certain behavior which exists between the analytic Fourier-Feynman transform (FFT) and the convolution product (CP) of functionals on AWS. As an interesting application, we apply this translation theorem to evaluate the analytic Feynman integral of the functional $$F(x)={\exp}\left(-iq\int_{0}^{T}x(t)y(t)dt\right),\,y{\in}C_0[0,\,T],\;q{\in}{\mathbb{R}}\,{\backslash}\,\{0\}$$ defined on the classical Wiener space C0[0, T].

PROPERTIES OF kth-ORDER (SLANT TOEPLITZ + SLANT HANKEL) OPERATORS ON H2(𝕋)

  • Gupta, Anuradha;Gupta, Bhawna
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.855-866
    • /
    • 2020
  • For two essentially bounded Lebesgue measurable functions 𝜙 and ξ on unit circle 𝕋, we attempt to study properties of operators $S^k_{\mathcal{M}({\phi},{\xi})=S^k_{T_{\phi}}+S^k_{H_{\xi}}$ on H2(𝕋) (k ≥ 2), where $S^k_{T_{\phi}}$ is a kth-order slant Toeplitz operator with symbol 𝜙 and $S^k_{H_{\xi}}$ is a kth-order slant Hankel operator with symbol ξ. The spectral properties of operators Sk𝓜(𝜙,𝜙) (or simply Sk𝓜(𝜙)) are investigated on H2(𝕋). More precisely, it is proved that for k = 2, the Coburn's type theorem holds for Sk𝓜(𝜙). The conditions under which operators Sk𝓜(𝜙) commute are also explored.

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

ON A STABILITY THEOREM FOR HYPEREXACT OPERATORS

  • Choi, Yong-Bin;Chung, Choon-Kyung
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.959-965
    • /
    • 1996
  • In this paper we study the index stability theorem for a bounded linear operator with closed range and extend the Kato's decomposition theorem for an absence of the index.

  • PDF