ON A STABILITY THEOREM FOR HYPEREXACT OPERATORS

YONG BIN CHOI AND CHOON KYUNG CHUNG

ABSTRACT. In this paper we study the index stability theorem for a bounded linear operator with closed range and extend the Kato's decomposition theorem for an absence of the index.

Suppose X and Y are normed spaces, write BL(X,Y) for the set of all bounded linear operators from X to Y. We recall that if k > 0 and if $||x|| \le k ||Tx||$ for each $x \in X$ then we call $T \in BL(X,Y)$ bounded below, if $y \in \{Tx : ||x|| \le k ||y||\}$ for each $y \in Y$ then we call T open. The operator $T \in BL(X,Y)$ will be called relatively open ([2],[8]) if its truncation

$$T^{\vee}: X \to T(X)$$

is open. Thus bounded below is just relatively open one-one, open is the same as relatively open onto. If X and Y are complete then ([1],[5])

(0.1)
$$T$$
 is relatively open $\iff T$ has a closed range $\iff T^{\dagger}$ has a closed range,

where T^{\dagger} is the adjoint operator of T. When X and Y are the same space then we can introduce ([2],[3]) the hyperrange and the hyperkernel of $T \in BL(X,X)$:

$$T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X)$$

and

$$T^{-\infty}(0) = \bigcup_{n=1}^{\infty} T^{-n}(0)$$
:

Received November 11, 1995. Revised June 8, 1996.

1991 AMS Subject Classification: 47A53.

Key words and phrases: hyperexact, relatively open, jump.

it is clear that both subspaces are invariant under any operator $S \in BL(X,X)$ which commutes with T, although for bounded operators on Banach spaces neither need be closed. If S commutes with T, so that also $ST^{\infty}(X) \subseteq T^{\infty}(X)$, we shall write

$$(0.2) S^{\wedge}: T^{\infty}(X) \to T^{\infty}(X)$$

for the operator induced by S. If in particular S is invertible and commutes with T then

$$(0.3) (T-S)^{-1}(0) \subseteq T^{\infty}(X),$$

so that the null space of T-S is the same as the null space of $(T-S)^{\wedge}$. An operator $T \in BL(X,X)$ is called hyperexact ([3],[4]) if

$$T^{-1}(0) \subseteq T^{\infty}(X)$$
.

Also we have

$$(0.4) T^{-1}(0) \subseteq T^{\infty}(X) \Longleftrightarrow T^{-\infty}(0) \subseteq T(X).$$

Our first observation was noticed by Goldberg ([1], Theorem V.1.2), which relies on Borsuk's antipodal lemma. But our argument avoids Borsuk's lemma; this was very nearly established by Harte ([2], (6.10.2.9)):

1. LEMMA. Let $S, T \in BL(X, Y)$. If T is relatively open and if S has a sufficiently small norm then

(1.1)
$$\dim(T-S)^{-1}(0) \le \dim T^{-1}(0)$$

PROOF. If dim $T^{-1}(0) = \infty$, this is evident. Suppose dim $T^{-1}(0) < \infty$. Then we can find a closed subspace W of X for which

$$T^{-1}(0) \bigoplus W = X.$$

By [5] Theorem 4, the restriction of T to the subspace W, T_W is relatively open and hence bounded below. Therefore there is k > 0 for which

$$x \in W \Longrightarrow ||Tx|| > k||x||.$$

Thus it follows that

$$x \in W \Longrightarrow ||(T - S)x|| \ge ||Tx|| - ||S||||x|| \ge (k - ||S||)||x||,$$

which gives that if ||S|| < k then the restriction of T - S to W is bounded below and hence one-one:

$$(T-S)^{-1}(0) \bigcap W = \{0\}.$$

Thus we have that $\dim (T-S)^{-1}(0) \leq \dim X/W = \dim T^{-1}(0)$.

For brevity, we shall write

$$\alpha(T) = \dim T^{-1}(0)$$
 and $\beta(T) = \dim Y/\operatorname{cl} T(X)$.

Thus $\alpha(T)$ and $\beta(T)$ will be either a non-negative integer or ∞ .

We are ready for a stability theorem:

2. THEOREM. Let X be a Banach space and let $T \in BL(X,X)$ have a closed range. If $S \in BL(X,X)$ is invertible, commutes with T and has a sufficiently small norm then

(2.1)
$$T$$
 is hyperexact $\Longrightarrow \alpha(T-S) = \alpha(T)$ and $\beta(T-S) = \beta(T)$.

Further, if $T^{-1}(0) \cap T^{\infty}(X)$ is finite dimensional and if $|\lambda|$ is sufficiently small then

(2.2)
$$\alpha(T - \lambda) = \alpha(T) \Longrightarrow T \text{ is hyperexact.}$$

PROOF. By (1.1), we have that $\alpha(T-S) \leq \alpha(T)$. For the reverse inequality, suppose that $x \in T^{-1}(0) \subseteq T^{\infty}(X)$. Thus there exists a sequence $\{z_n\}$ in X such that

$$x = Tz_1 = T^2 z_2 = T^3 z_3 = \cdots$$

By using (0.4) and (0.1), we can find a constant k > 0 and a sequence (x_n) in X with $x_1 = x$ for which

(2.3)
$$x_n = Tx_{n+1}$$
 and $k||x_{n+1}|| \le ||x_n||$ for each $n = 1, 2, \cdots$

Since X is complete, the series

$$y_x = \sum_{k=1}^{\infty} S^{k-1} x_k$$

is convergent in X because if ||S|| < k then by (2.3),

$$|| \sum_{k=1}^{m} S^{k-1} x_{k} || \le ||x_{1}|| + \frac{||S||}{k} ||x_{1}|| + \dots + \frac{||S||^{m-1}}{k^{m-1}} ||x_{1}||$$

$$\le \frac{||x||}{1-\delta} \quad \text{with } \delta = \frac{||S||}{k} < 1.$$

Thus $Ty_x = Sy_x$, which says that $y_x \in (T - S)^{-1}(0)$ whenever $x \in T^{-1}(0)$; therefore we have that $\alpha(T) \leq \alpha(T - S)$.

For the argument for β , observe, by (0.1) and (0.4), that

$$T^{-1}(0) \subseteq T^{\infty}(X) \Longrightarrow T^{-1}(0)^{\perp} \supseteq T^{n}(X)^{\perp} \ (n = 1, 2, \cdots)$$

$$\Longrightarrow T^{\dagger}(X^{\dagger}) \supseteq (T^{\dagger n})^{-1}(0) \ (n=1,2,\cdots) \Longrightarrow T^{\dagger -1}(0) \subseteq T^{\dagger \infty}(X^{\dagger}),$$

where K^{\perp} denotes the annihilator of K.

Now applying the equality for α to T^{\dagger} gives the equality for β . Towards (2.2), we claim that

$$\dim T^{\wedge -1}(0) \le \dim T^{-1}(0) = \dim (T - \lambda)^{-1}(0)$$
$$= \dim (T - \lambda)^{\wedge -1}(0) \le \dim T^{\wedge -1}(0) :$$

indeed the first inequality is evident, the second equality is the assumption, the third equality is (0.3), and the last inequality is (1.1). Thus $\dim T^{-1}(0) = \dim T^{\wedge -1}(0)$. Therefore if $T^{-1}(0) \cap T^{\infty}(X)$ is finite dimensional, we can conclude that $T^{-1}(0) \subseteq T^{\infty}(X)$.

If, in (2.2), the assumption "dim $\left(T^{-1}(0)\cap T^{\infty}(X)\right)<\infty$ " is dropped, (2.2) may fail: for example, take $X=\ell_2$ and consider the operator

$$T(x_1, x_2, x_3, x_4, \cdots) = (0, 0, x_5, x_7, x_9, x_{11}, \cdots).$$

Then T has a closed range and $\alpha(T - \lambda) = \alpha(T) = \infty$ for sufficiently small λ ; but T is not hyperexact.

If $T \in BL(X,X)$ is semi-Fredholm then, by the punctured neighborhood theorem ([1],[2],[5]), there is $\epsilon > 0$ for which $\alpha(T-\lambda)$ and $\beta(T-\lambda)$ are both constant for $0 < |\lambda| < \epsilon$. Thus we can define ([9]) the jump, j(T), of a semi-Fredholm operator T:

$$j(T) = \alpha(T) - \alpha(T-\lambda) \quad \text{for } \ 0 < |\lambda| < \epsilon \quad \text{if T is upper semi-Fredholm}$$
 and

$$j(T) = \beta(T) - \beta(T - \lambda)$$
 for $0 < |\lambda| < \epsilon$ if T is lower semi-Fredholm.

From Theorem 2, we can see that if T is semi-Fredholm then ([10])

(2.4)
$$j(T) = 0 \iff T \text{ is hyperexact.}$$

Then Kato's decomposition theorem ([7],[10]) says that if $T \in BL(X,X)$ is semi-Fredholm, T can be decomposed as:

$$(2.5) T = T_1 \oplus T_2,$$

where T_1 is nilpotent and T_2 is hyperexact.

We can now have (2.5) for an absence of the index. For this we need ([6]):

- 3. LEMMA. If $T \in BL(X,Y)$ and $S \in BL(Y,Z)$ for Banach spaces X,Y and Z then
- (3.1) S(Y) and $S^{-1}(0)+T(X)$ are both closed $\Longrightarrow ST(X)$ is closed and

(3.2)
$$S^{-1}(0) + T(X) \text{ is closed and } S^{-1}(0) \cap T(X)$$
 is finite dimensional $\Longrightarrow T(X)$ is closed.

For the sake of completeness, we sketch a proof.

The implication (3.1) is a lemma of Kato ([7] Lemma 331). When the intersection $S^{-1}(0) \cap T(X)$ is $\{0\}$ then (3.2) is a simple application of the open mapping theorem ([2] Theorem 4.8.2); consider the operator $W: Z = S^{-1}(0) \times X/T^{-1}(0) \to Y$ defined by setting

$$W(y, x + T^{-1}(0)) = y + Tx$$
 for each $y \in Y, x \in X$.

Evidently W is well-defined, bounded, and onto with finite dimensional null space: there is therefore $W': Y \to Z$, also bounded and linear, for which W = WW'W. Now observe that

$$E = TW': Y \to Y$$
 satisfies $E = E^2$ and $T(X) = E(Y)$
$$= (I - E)^{-1}(0) \text{ is closed }.$$

We meet a decomposition theorem:

4. THEOREM. Let $T \in BL(X,X)$. If $T^{-1}(0) \cap T(X)$ is finite dimensional and if there is k > 0 for which $T^{-k}(0) + T(X)$ is complemented then T can be decomposed as $T = T_1 \oplus T_2$, where T_1 is nilpotent and T_2 is hyperexact.

PROOF. Suppose $T^{-1}(0) \cap T(X)$ is finite dimensional and $T^{-k}(0) + T(X)$ is complemented. Remembering the isomorphism ([2])

$$(ST)^{-1}(0)/T^{-1}(0) \cong T(X) \cap S^{-1}(0),$$

we have

$$T^{-k}(0)/T^{-1}(0) \cong T^{-(k-1)}(0) \cap T(X) \cong \bigoplus_{i=1}^{k-1} T^{i-1}(0) \cap T^{i}(X),$$

where each summand is finite dimensional. Thus

$$\left(T^{-k}(0)+T(X)\right)/\left(T^{-1}(0)+T(X)\right)$$
 is finite dimensional

and hence $T^{-1}(0) + T(X)$ is complemented. Thus we can find closed subspaces L, W and Z of X for which

$$X = \overbrace{L \oplus T^{-1}(0) \cap T(X)}^{T^{-1}(0)} \oplus W \oplus Z \quad \text{and} \quad T^{-1}(0) \cap T(X) \oplus W = T(X).$$

Write

$$M = T^{-1}(0) \cap T(X) \oplus W \oplus Z.$$

Then $T(M) \subseteq M$ and

$$T_L = 0$$
, $T_M(M) = T(X)$ and $T_M^{-1}(0) = T^{-1}(0) \cap T(X)$.

Since, by (3.2) and our assumption, T_M has a closed range with finite dimensional null space, T_M is upper semi-Fredholm. By Kato's decomposition theorem, T_M can be decomposed as

$$T_M = T_M' \oplus T_M''$$

where T_M' is nilpotent and T_M'' is hyperexact. Now putting $T_1 = T_L \oplus T_M'$ and $T_2 = T_M''$ gives the result. \bullet

References

- 1. S. Goldberg, Unbounded linear operators, McGraw-Hil, New York, 1966.
- 2. R. E. Harte, Invertibility and singularity, Dekker, New York, 1988.
- Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-802.
- 4. _____, On Kato regularity, Studia Math (To appear).
- 5. R. E. Harte and W. Y. Lee, The punctured neighborhood theorem for incomplete spaces, Journal of Operator Theory 30 (1993), 217-226.
- 6. _____, A note on the punctured neighborhood theorem, (preprint).
- 7. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
- 8. W. Y. Lee, Relatively open mappings, Proc. Amer. Math. Soc. 108 (1990), 93-94.
- T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect.A 87 (1987), 137-146.
- 10. _____, Removing the jump-Kato's decomposition, Rocky Mountain J. Math. 20 (1990), 603-612.

Department of Mathematics Education Kwan Dong University Kangnung 210-701, Korea