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PROPERTIES OF k**-ORDER (SLANT TOEPLITZ + SLANT
HANKEL) OPERATORS ON H?2(T)

ANURADHA GUPTA AND BHAWNA GUPTA

ABSTRACT. For two essentially bounded Lebesgue measurable functions

¢ and £ on unit circle T, we attempt to study properties of operators
K _ gk k 2 ko th

SM(dAE) = ST4> —+ S’Hg on H*(T) (k > 2), where ST¢ is a k'*-order slant

kth

Toeplitz operator with symbol ¢ and S]Iflf is a -order slant Hankel op-

erator with symbol £&. The spectral properties of operators S}“\A (6,6) (or

simply S"X/l<¢>) are investigated on HZ2(T). More precisely, it is proved

that for £ = 2, the Coburn’s type theorem holds for S_}/C\/l((ﬁ)' The condi-
k

tions under which operators SM(¢) commute are also explored.

1. Introduction and preliminaries

Since the beginning of nineteenth century, the theory of Toeplitz and Han-
kel operators is being studied extensively on several spaces like Hardy space,
Bergman space, Fock space, etc. These operators have lots of applications in
mathematics and mathematical physics and therefore they got a prominent
place in the study of operator theory. In 1999, Basor and Ehrhardt [4,5] stud-
ied the sum of Toeplitz and Hankel operators on the Hardy space and defined
it as M(¢) = Ty + Hy for functions ¢ € L>(T), where T, and Hy are Toeplitz
and Hankel operators, respectively, with symbol ¢ and evaluated its several
properties. Later on, they investigated the connections between Fredholmness
and invertibility of M(¢) (see [6]). These developments [6] were also extended
to the study of operators M(¢, §) = T, + He for functions ¢, & € L>°(T) (denote
M(o, ¢) by M(4)). In 1996, the notion of slant Toeplitz operators on L?(T)
and its compression to H%(T) were introduced by Ho [8]. Then, Arora, Batra
and Singh [2] introduced the class of slant Hankel operators on L?(T) and ex-
tended his ideas to define the compression of slant Hankel operators to H?(T).
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After that k*"-order slant Toeplitz and k*"-order slant Hankel operators were
defined and studied on H?(T) (see [1,3]). These developments motivated us to
study k*"-order (slant Toeplitz + slant Hankel) operators on H?(T). Algebraic
as well as spectral properties of these operators are investigated. Along with
this, it is shown that if & = 2, then the Coburn type theorem holds for k*"-order
(slant Toeplitz + slant Hankel) operators on H?(T). Meanwhile, it is shown
that if S]’fﬂ %) is Fredholm, then ¢ is invertible. Also, the conditions under
which the operators S ]’f/f( ) commute have been explored, where we denote the
operator SJI?/I(¢,¢>) by simply SJ@(@ for ¢ € £>°(T).

Let L?(T) denote the space of all complex valued square-integrable Lebesgue
measurable functions f on the unit circle T with respect to normalized Lebesgue
measure df. It forms a Hilbert space with respect to the inner product

1 27 R
o) =5 [ 7))o
T Jo
for all f,g € L*(T). In other words, the space L?(T) can also be expressed as
LA T)={f:T = C: f(e") = anei"‘g and Z | fn]? < o0}

neL nez
The Hardy space H?(T) is defined as

H*(T) ={f € L*(T) : f, =0 for all n < 0}

and it is a closed subspace of L?(T). The space L>(T) is the Banach space
of all essentially bounded Lebesgue measurable functions on T. Denote by
P, the orthogonal projection of L?(T) onto H?(T). For f € L?*(T) and for
¢ € L>(T), the operator My : L?(T) — L?(T) is the multiplication operator
induced by ¢ and is defined as My(f) = ¢f and J : L*(T) — L*(T) defined
as J(f(z)) = Zf(z) is the unitary self-adjoint operator.

The Toeplitz operator on H?(T) with symbol ¢ is a bounded linear operator
T, : H*(T) — H*(T) defined by

Ty(f) = PMy(f)
and the Hankel operator Hy : H?(T) — H?(T) is defined as
Hy(¢) = PMyJ(f)

for all f € H*(T). Also, |Ty|| <[]l and [[Hy|l < [[6loc-
Throughout the paper we assume that k > 2. Define Wy, : L?(T) — L*(T)
by
Wy _ [ P =0
0 ifp>0

for all integers n,p such that 0 < p < k. One can refer [1] to find that W is
a bounded linear operator with ||[Wi| = 1 and the adjoint of W}, is given by
Wi (") = zF" for all integers n.
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The k*"-order slant Toeplitz operator Sﬁ [1] and kt"-order slant Hankel
operator S’;I¢ [3] on H?(T) with symbol ¢ are defined as

Si, =WiTy  and  Sj = WiH,.

Let B(X,Y) be the set of all bounded linear operators from a complex
Banach space X to a complex Banach space Y (if X =Y, then denote it by
B(X)). An operator T' € B(X,Y) is Fredholm operator if Range T is closed,
dimensions of Kernel T" and cokernel T are finite. In this case, index of T is
defined as

ind T' = dim(Kernel T') — dim(cokernel T').

2. Generalized (slant Toeplitz + slant Hankel) operators on H?Z(T)

In this section, the k*"-order (slant Toeplitz + slant Hankel) operators on
H?(T) are defined and their basic properties are studied.

Definition. Let ¢,£ € L>°(T). For all f € H?(T), a linear operator S’/‘(/[(¢ s
H?(T) — H?(T) defined by

St () = St, () + St (f) = Wi P(My + MeJ)(f)
is said to be k*"-order (slant Toeplitz + slant Hankel) on H?(T). Evidently
the operator Sf\/tw,g) is bounded and

1S% (e | = 115, + St < N1 @lloo + [1€]loo-

Since Ty and Hy can be represented as Ty = PMyP and Hy = PMyJ P, there-
fore, we shall use the notation Sﬁ/{(q&,g) (f) = Wi P(My + MJ)P throughout
the paper. If ¢ = &, then it is denoted by Sﬁ/l(@ simply. Also, for k = 2 the
operator Sjcvl(qﬁ,f) is denoted by Spq(e.¢)-

Define g(z) = ¢g(z) and g(z) = g(z) for all functions g. In [4], it is proved
that

(1) M(€) = M(O)M(E) + HyM(E — &)
Now applying Wy, on both sides of the Eq. (1), we get
(2) Shi(oe) = ShaoyM(©) + S, M(E ~ ).

Let ay,,, denote (m, n)iﬁ,nzo entry of the matrix representation of S’f\'/l((ﬁ €

with respect to the standard orthonormal basis {e, = 2"}2%, of H?(T). Let
A(2) = Y ez Pn2™ and £(2) = >, 5 &n2" be functions in L>°(T), then for all

non-negative integers m, n, we have <S§1¢z", z’”> = Ppm—n and < Sk, 2" Zm> _
Ekmtn+1. Therefore,
am,n - <S']XA(¢E)Z”7 Zm> = <S§l¢zn’ Z'm> + <S’;[EZn, Zm>

= ¢km—n + Ekm-&-n-&-l
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and hence the matrix of k*"-order (slant Toeplitz + slant Hankel) operator on
H?(T) is given by
¢o + &1 p_1+& p_2+&3
bk + k1 -1 + Ekt2 Pr—2 + Erys

(3) [Slfvlw ol = Gk + Eakr1 Gor—1 + E2k42 Gor—2 + Eakt3
’ O3k + &34 1 D3k—1 + E3k42 P3k—2 + E3k+3

Proposition 2.1. Let ¢, € L*°(T). Then the following hold:
@) l18lloc < [15%4(s) I < V2[]lco-
(2) The mapping T' : L>=(T) — B(H?(T)) defined by I'(¢p) = S’j/l((b) is
linear and one-one.
(3) @m.n + Gmt2.n = Gmt1,n—k + AGmi1,n+k for all integers m > 0,n > k,
where @,y is the (mv”)m,v»o entry of the matrix representation of

Sﬁvl(aﬁ,s) with respect to basis {en 2, of HQ(']T),

Proof. (1) By (4], Proposition 2.1), we have [do0 < [M(@)] < V2]l
Since [[Wy|| = 1, therefore, [|S%, Il < V2||¢|loo- Let U, = M,n on L*(T).
Then
U_nSMk(¢) U, = U_anPM¢PUn + U_anPM¢JPUn
= (U_ Wi Up)(U-,,PU,)(U-, MuU,)(U_,PUy,)
+ (U W U )(U_, PU_,,) (U My JU, ) (U_,, PU,,).

Since U_,MyU,, = My, U, MyJU,, = MyJ, U_,,PU, = I and U_,PU_,, = 0
strongly on L?(T) as n — oo, therefore we have

U-nShisyUn = U-aWilUpn My = U_y Wi My U,

strongly as n — oo. Since U, are isometries on L?(T), therefore, ||Sf\4(¢) | >
16l

(2) From the linearity of T" and by part (1), the result follows.

(3) From matrix 3, it follows that am, » + am+2.0n = Gmt1,n—k + Qmt1,n4k fOr
all integers m > 0,n > k. O

3. Fredholm properties of k*"-order (slant Toeplitz + slant Hankel)
operators

This section is devoted to the study of spectral properties of k*-order (slant
Toeplitz + slant Hankel) operators on H?(T). In the following theorem, we
show that a non-invertible function ¢ € #°°(T) cannot induce a Fredhom k-
order (slant Toeplitz + slant Hankel) operator. As a consequence of this, it
follows that if .S ’j\/l () is an invertible operator, then ¢ is invertible.

Theorem 3.1. Let ¢ € L*°(T). If the operator S}“Vw)) s a Fredholm operator,
then ¢ is invertible.
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Proof. Let S/’i/[( ) be a Fredholm operator, therefore, there exist € > 0 and a
finite rank operator R on KerS/’iA((b) such that

1S54y Sl + IRFI = €ll £l
for all f € H?(T). For all f € L?(T), we obtain that
ellfll = ell(f = P)fIl + el P1
< el = P)fIl + 1Sk PfIl + IPRP S|
15%4s) Il + [IPRPF[| + €[|(I = P) ]|

Now replacing f by U, f and using the fact that ||Uy,|| = 1 for all integers n,
we get that

ell £l = el U £
< 1%y Un Il + | PRPUf|| + €| (I = P)U, f|
= |U—nS%4(syUnfll + |PRPU, f|| + €|U_n(I — P)U,f].

Since U,, — 0 weakly as n — 0 and PRP is a compact operator, therefore,
PRPU,, — 0 strongly as n — 0. Also, U_,PU, — I strongly as n — 0,
([Wi|| = 1 and ||Ug,| = 1. Hence, €||f|| < ||U_nSﬁA(¢)Unf|| but proceeding
in the similar manner as in the proof of Proposition 2.1(1), we obtain that
U_nSfM(qﬁ)Un — U_, Wi MgU, strongly on L?(T) as n — oo. Therefore, it
follows that €| f|| < ||Mgf]|. Hence, ¢ is invertible in L>°(T). O

Let

H?.(T) = {Z ane™ € L*(T) | a, = 0 for all integers n > O}
nez
and

}/I\Q('JT) = {Z ane™ € L*(T) | a, = 0 for all integers n > 0} .
neZ

For ¢ € L>(T), define the set Ay = {z € T|¢(z) = 0 = ¢(z)} then the
characteristic function x4, is real and xa, = xa, on T. Therefore, from Eq.
(1), it follows that 0 = M(¢xa,) = M(p)M(xa,) and hence, ImM(x4,) C
KerM(¢).

Theorem 3.2. Let ¢ € L*(T). Then either KerM(¢) = ImM(xa,) or
S’f\/l(d))* is one-one.

Proof. Suppose KerS/’i/t((b)* # {0} then there exists a non-zero h € H?(T)
such that Sf\/l(d))*h = 0. Let g € H?(T) such that g € KerM(¢). Define the

functions

91(z) =T+ 1)g(2),  92(2) = Mygr(2),
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hi(z) = M(;,W,:h(z), ha(z) = (I + J)hi(2).

Clearly Pgo = 0 and Phy = 0 giving go,hy € H2(T). Using J? = I, we
have Jg; = g1 and Jhy = hy but hy € H2(T), therefore, ho = 0. This gives
Jhy = —hy which means g;(z) = zg1(2) and —hy(z) = zhi(Z). From this it
follows that

(4) g1h1(2) = —gihi ()

but gihi(z) = g1¢W;h(z) = g2W;h(z) where h € H?*(T) implies W;h €
H2(T). Since g2 € H2(T), therefore, goW;h € H!(T) and hence by Eq. (4)
it follows that gaWih = 0, but h € H?*(T) and h # 0 implies W;h # 0,
therefore, by F. and M. Riesz Theorem [9], we have W}/h # 0 a.e on T. This
gives go = 0 implies ¢g; = 0. Now ¢(2)g1(2) = 2Zé(2)g1(2) = 0. Therefore,
(1 —xa4,)91(2) = 0 implies Mx 4,9 = g and hence, g € ImM(x4,)- O

As a consequence of Theorem 3.2 and using the fact that if M(¢) is Fred-
holm, then ¢ is invertible in L>°(T) for ¢ € L>°(T) [4], we obtain the following:

Corollary 3.3. Let ¢ € L™(T). If M(¢) is Fredholm, then either M(¢) is
one-one or Sj“\/[(qb)* is one-one.

The well known Coburn’s theorem states that for a non-zero Toeplitz oper-
ator T, on H?(T), either kernel of Ty is {0} or kernel of T is {0}. One can
refer to Chapter 7 of [7] for Coburn’ theorem for Toeplitz operators and related
results. The following result shows that under some conditions on function ¢,
the Coburn type theorem also holds for Saq(g)-

Theorem 3.4. (Coburn Type Theorem for Syqg)) If ¢ € L*(T) is such that
P(z) = &(2%) for some & € L°(T) and ¢ is invertible, then either Sy is
one-one or Syyp)" is one-one.

Proof. If KerSpqg)* # {0}, then there exists a non-zero h € H?(T) such that
Sam(e)“h = 0. Using the same argument as in Theorem 3.2 for k = 2, we get
(5) g1h1(2) = —g1ha (2)

but gi1h1(2) = g1oWsh(z) = g16W3h(z). Now applying Wa on both sides of
Eq. (5), we obtain that

(6) Wagihi(2) = —Wagihi(z).

Let P, denote the projection of L?(T) onto the closed linear span of {2%"|n €
Z}. Since ¢ € L*°(T) and by reframing a property of Ws [8] which states that
if either f or g is in L*°(T), then Wa(fg) = Wa(f)Wa(g) + zWa(Z2f)Wa(zg) =
Wa(f)Wa(g) + Wa((I — P2) f.(I — P2)g) [8], we get

Wagihi = Wa(g10Wsh) = Wa(g1¢)Wa(W5h) + Wa[(I — Py)g1¢.(I — Pa)W3h).

By using the definition of W3, we have (I — P2)W5 h = 0, therefore we ob-
tain that Wag1hi(2) = Wa(g10)Wa(Wah)(2) = Wa(g10)h)(2) = g2(2)h(z) and
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hence from Eq. (6) it follows that goh(2) = —goh(2) but h € EI\Q(’JT) and
g2 € HZ2(T), therefore, goh € H}(T) and hence, goh = 0 but h € H*(T)
and h # 0, therefore, by F. and M. Riesz Theorem [9], we have h # 0 a.e
on T. This gives go = 0 which implies Wa(¢g1) = 0. Since Wa(¢g1) =
Wa(¢)Wa(g1) + Wal(I — P2)¢.(I — P»)g1], therefore,

(7) Wa(¢)Wa(g1) =0

as ¢on+1 = 0 for all integers n, where ¢a,41 is the Fourier coefficient of ¢
with respect to 22"*! and this implies (I — P;)¢ = 0. On applying W5 on
both sides of Eq. (7), we get 0 = W5 (Wa(d)Wa(g1)) = WaWa(d)WiWa(g1) =
PpW5Wa(g1) but it is assumed that ¢ is invertible in L*°(T). Hence, W5 Wa(g1)
=0 gives g = 0. ([

4. Commutativity of k*"-order (slant Toeplitz + slant Hankel)
operators

In this section, we are dealing with the commutative property of k*-order
(slant Toeplitz + slant Hankel) operators and we show that these types of
operators commute if and only if their symbol functions are scalar multiple of
each other.

Theorem 4.1. Let ¢(z) = Y7 a;2/ and £(2) = 377 ;27 be such that

@, & € L*°(T), where n and m are non-negative integers and Gy, by, A—p, b_p #
0. Then, Sjc\/l(d)) and val(g) commute if and only if ¢ and & are scalar multiple
of each other.

Proof. If € = \¢ for some scalar \, then it is obvious that vat(@ and S’j/l(g)
commute. Conversely, suppose that Sﬁ/t( o) and S/’i,t(g) commute. Therefore,

(8) Ska) Shae) ™) = Skie) Skaee) "TT).
Now

She) Shae) (")
= P(I + J)LzPW;P(I + J)LgPW; (=)

n

= P(I +J)LzPW;P(I +J) b; 71 hmtkm
Jj=—m
kn+(k+1)m
= P(I+J)LzgPW;P(I +J) R

j=(k—1)n+km

kn+(k+1)m B _ kn+(k+1)m B .
= P(I + J)LEPWI:P Z bkn«kkmsz] + Z bkn+km7j27J71

j=(k—1)n+km j=(k—1)n+km
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kn+(k+1)m
= P(I +J)LzPWy Z Dhent kem—j 2
j=(k—1)n+km
kn+(k+1)m
= P(I + J)Lg Z Ekn+km—jzkj
j=(k—1)n+km
n kn+(k+1)m
= P(I + J) Z Eiii Z Bkn_;,_km_jzkj
i=—m  j=(k—Lntkm
kn+(k+1)m  kj+m
= Z Z Ekjfigkn+kmszi

j=(k—1)n+km

i=kj—n

E(k—1)n+(k>+1)m

_ T i
Ak (k—1)n+km—iOn?

i=(k2—k—1)n+k2m

k(k—1)n+(k*4+1)m+k

+ Ao (k—1)n+km+k—ibn—12" + -+
i=(k2—k—1)n+k2m-+k
E2n+(k24+k+1)m
9) + Z g2tk (ko 1)m—iD—m2"

i=(k2—1)n+k(k+1)m

Similar calculations give

k * ok *
S Smep) (2

(10)

kn+(k+1)m  kj+m

) = Z Z brj—iGkntkm—j2"
j=(k—1)n+kmi=kj—n
k(k—1)n+(k%4+1)m

= Z br(k—1)n+km—iOnZ?
i=(k2—k—1)n+k2m

)

k(k—1)n+(k2+1)m+k
+ Z bh(k—1)ntkmtk—iGn—12" + -+
i=(k2—k—1)n+k>m+k
E2n4(k24+k+1)m

+ Z 5k2n+k(k+1)m—i5—mzi-
i=(k2—1)n+k(k+1)m

Since {2"}22, forms an orthonormal basis, therefore, on using Eqgs. (8), (9)

and (10) and on comparing the coefficients of z7+4m+1 pntdm+2 yntdm+3 -

ZAntTm=2 dntTm—1 o hoth sides, it follows that

Gp—1by = bp_1ap,

anf2bn + anbnfl = bn72an + bnanfly

)
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an73bn + anflbnfl = bnf?)a/n + bnflanfla

a—mb—m+1 + a—m+2b—7n = b—ma—m—i-l + b—m+2a—ma

a/fm+1b7m = b7m+1a7m-

This yields Z—’; = Mfor all -m < p < n —1, where A = Z—:. Hence, £(z) =
Ao (2). O

Now, we present a lemma which is instrumental in proving our main result
(Theorem 4.4). The following lemma is true for k = 2 but we obtain the same
result for £ > 2.

Lemma 4.2. Let ¢(2) = Y5, a;2 and &(z) = 335__ b;27 be such that
¢,& € L>(T) where n,m,r,s are non-negative integers. If Spqg)y and Spqe)
commute, then a; =0 and b; = 0 for all integers j < —min{m, s} or min{n, r}

< j (if any such a; or b; exists).

Proof. If any of ¢ and &£ is equal to zero, then the result follows trivially.
Suppose none of ¢ and ¢ is zero. Since Spqg) and Spqe) commute, therefore,

max{n,r}-}-max{m,s})

Srme) Smee) (2

(11) * * maxqin.r maxq{m,Ss
= Sp(e) Smg) " (mextmrtimaxtmshy,

Then the following four cases arise:
(1) n>rand m > s;
(2) n>rand m < s;
(3) n<rand m > s;
(4) n<rand m<s.
Case I: If n > r and m > s, then let n —r =z > 0. Now

Sat(e) ey (zmax{mr}Fmax{m,shy
= Spme) Sme " (z")

= P(I + J)LzPW3 P(I + J)LgPWs (2"*™)
= P(I+J)LzgPWsP(I+J) | > bz

2n+2m+s _ .
= P(I+J)LzPWsP(I +.J) > bangom- 2
j=2n+2m-—r

2n+2m+s B )
= P(I+J)LzPWsP(I +.J) > bansam 7
j=n+2m-+tzx
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2n+2m+s
= P(I + J)L$ Z b2n+2m,—jZ2J
j=n+2m+4x
n 2n+2m—+s
= P(I + J) Z Eizl Z b2n+2m—j22j
i=—m j=n+2m+tzx

2n4+2m-+s  2j+m
E E Q25— ibantom—;2"
j=n+2m+tzi=2j—n
2n+5m+2x
7 )
= E : A2n+4m+22—ibrz
i1=n+4m-+2x
2n+5m—+2x+2
a. 7 7
+ § : a2n+4m+2z—i+2br_12’ —+ -
i=n+4m+2x+2
An+5m+2s
a 7 7
(12) + E Gantam+2s—ib_s2".
1=3n+4m-+2s

Consider

max{n,r}+max{m,s} )

Sre) Srmp) (2

= SM(g)*SM(¢)*(Zn+m)

= P(I + J)LgPW5 P(I + J)LzPW5 (")

= P(I + J)LEPWQ*P(I—F J) Z aj5j22n+2m

j=-m
2n+3m
= P(I+)LePWs P+ ) [ D Gontom—g2?
j=n+2m
2n+3m
=PI+ DLz | Y @nrom—yz?
Jj=n+2m
r 2n+3m
=PI+J)[ D bz Y Gngom-—jzY
i=—s j=n+2m

2n+3m 2j+s
E E baj—ilGon+om—jz"
j=n+2mi=2j—r
2n+dm+ts 2nt4m+s+2
Z b2n+4m—ianzl + E b2n+4m—i+2an_12'2 —+ ..
i=n+4m+tzx i=n+44dm+z+2
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4n+6m-+s

(13) + Z 54n+6m,ia,mzi.
1=3n+6m+x

Since {2"}22, forms an orthonormal basis, therefore, by using Eqgs. (11), (12)
and (13), it follows that the coefficients of z"+4m+#+P are zeroes for all integers
0 <p <z for x > 0. This gives

bn_za, =0,

bp—z—1a, =0,

bp—g—2an + bp_zan_1 =0,

(14) bn—zan + by 101 =0,

bp—w—aan +bn_z—2an_1+bp_gan_2 =0,

If a, # 0, we have b,_, = b. = 0 and subsequently b, = b._; = -+ =
b,_z+1 = 0. On comparing the coefficients of znt4m+2z ntdm+2z+l = ete
it is concluded that b, = 0 for all » < p < —s. It means & = 0 which is a
contradiction. Hence, a,, = 0. Observe that (4n 4+ 6m + s) — (dn 4+ 5m + 2s) =
m—s > 0, so from Egs. (12) and (13), it follows that the coefficients of

pAnFOIMA2sHL pAntdmA2s42 | pAnt6mEs are zeroes. Hence by using Eq. (14),
we obtain that a, = 0 for all p > r or p < —s.
The other 3 cases follow on similar lines. (I

The above lemma also holds for k& > 2 and it is stated as follows:

Lemma 4.3. Let ¢(2) = 37 a;27 and £(z) = Y75 b2’ be such that
¢,& € L°(T) where n,m,r,s are non-negative integers. If S/]i/t((ﬁ) and S/kw(g)
commute, then a; =0 and b; = 0 for all integers j < —min{m, s} or min{n, r}

< j (if any such a; or b; exists).

Theorem 4.4. Let ¢(2) = Y7, a;2) and &(z) = 37_ bz’ be such that

@, & € L>(T) wheren,m,r, s are non-negative integers. Then wa(@ and Slj\/l({)
commute if and only if & is a scalar multiple of ¢.

Proof. Let ¢ = X\ for some scalar A then it is obvious that S’fvl((b) and S/k\'/l(s)
commute. Conversely, suppose that Sﬁ/t( ) and Sf\/l(g) commute. Then by
Lemma 4.3, it follows that a; = 0 and b; = 0 for all integers j < —min{m, s}

min{n,r}
j=—min{m,s}

and ¢(z) = ET;IE{&’Q{m’S} bjz7. Hence by Theorem 4.1, we conclude the result.
O

or min{n,r} < j (if any such a; or b; exists), that is, ¢(z) = > a;jz
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