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PROPERTIES OF kth-ORDER (SLANT TOEPLITZ + SLANT

HANKEL) OPERATORS ON H2(T)

Anuradha Gupta and Bhawna Gupta

Abstract. For two essentially bounded Lebesgue measurable functions

φ and ξ on unit circle T, we attempt to study properties of operators
SkM(φ,ξ)

= SkTφ
+ SkHξ

on H2(T) (k ≥ 2), where SkTφ
is a kth-order slant

Toeplitz operator with symbol φ and SkHξ
is a kth-order slant Hankel op-

erator with symbol ξ. The spectral properties of operators SkM(φ,φ)
(or

simply SkM(φ)
) are investigated on H2(T). More precisely, it is proved

that for k = 2, the Coburn’s type theorem holds for SkM(φ)
. The condi-

tions under which operators SkM(φ)
commute are also explored.

1. Introduction and preliminaries

Since the beginning of nineteenth century, the theory of Toeplitz and Han-
kel operators is being studied extensively on several spaces like Hardy space,
Bergman space, Fock space, etc. These operators have lots of applications in
mathematics and mathematical physics and therefore they got a prominent
place in the study of operator theory. In 1999, Basor and Ehrhardt [4,5] stud-
ied the sum of Toeplitz and Hankel operators on the Hardy space and defined
it asM(φ) = Tφ +Hφ for functions φ ∈ L∞(T), where Tφ and Hφ are Toeplitz
and Hankel operators, respectively, with symbol φ and evaluated its several
properties. Later on, they investigated the connections between Fredholmness
and invertibility ofM(φ) (see [6]). These developments [6] were also extended
to the study of operatorsM(φ, ξ) = Tφ+Hξ for functions φ, ξ ∈ L∞(T) (denote
M(φ, φ) by M(φ)). In 1996, the notion of slant Toeplitz operators on L2(T)
and its compression to H2(T) were introduced by Ho [8]. Then, Arora, Batra
and Singh [2] introduced the class of slant Hankel operators on L2(T) and ex-
tended his ideas to define the compression of slant Hankel operators to H2(T).

Received November 22, 2019; Accepted January 16, 2020.
2010 Mathematics Subject Classification. Primary 47B35; Secondary 47B30.
Key words and phrases. kth-order slant Toeplitz operator, kth-order slant Hankel opera-

tor, kth-order (slant Toeplitz + slant Hankel) operator, Fredholm operator.
Support of CSIR-UGC Research Grant(UGC) [Ref. No. 21/12/2014(ii) EU-V] to second

author for carrying out the research work is gratefully acknowledged.

c©2020 Korean Mathematical Society

855



856 A. GUPTA AND B. GUPTA

After that kth-order slant Toeplitz and kth-order slant Hankel operators were
defined and studied on H2(T) (see [1,3]). These developments motivated us to
study kth-order (slant Toeplitz + slant Hankel) operators on H2(T). Algebraic
as well as spectral properties of these operators are investigated. Along with
this, it is shown that if k = 2, then the Coburn type theorem holds for kth-order
(slant Toeplitz + slant Hankel) operators on H2(T). Meanwhile, it is shown
that if SkM(φ) is Fredholm, then φ is invertible. Also, the conditions under

which the operators SkM(φ) commute have been explored, where we denote the

operator SkM(φ,φ) by simply SkM(φ) for φ ∈ L∞(T).

Let L2(T) denote the space of all complex valued square-integrable Lebesgue
measurable functions f on the unit circle T with respect to normalized Lebesgue
measure dθ. It forms a Hilbert space with respect to the inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(eiθ)g(eiθ)dθ

for all f, g ∈ L2(T). In other words, the space L2(T) can also be expressed as

L2(T) = {f : T→ C : f(eiθ) =
∑
n∈Z

fne
inθ and

∑
n∈Z
|fn|2 <∞}.

The Hardy space H2(T) is defined as

H2(T) = {f ∈ L2(T) : fn = 0 for all n < 0}

and it is a closed subspace of L2(T). The space L∞(T) is the Banach space
of all essentially bounded Lebesgue measurable functions on T. Denote by
P , the orthogonal projection of L2(T) onto H2(T). For f ∈ L2(T) and for
φ ∈ L∞(T), the operator Mφ : L2(T) −→ L2(T) is the multiplication operator
induced by φ and is defined as Mφ(f) = φf and J : L2(T) −→ L2(T) defined
as J(f(z)) = z̄f(z̄) is the unitary self-adjoint operator.

The Toeplitz operator on H2(T) with symbol φ is a bounded linear operator
Tφ : H2(T) −→ H2(T) defined by

Tφ(f) = PMφ(f)

and the Hankel operator Hφ : H2(T) −→ H2(T) is defined as

Hφ(φ) = PMφJ(f)

for all f ∈ H2(T). Also, ‖Tφ‖ ≤ ‖φ‖∞ and ‖Hφ‖ ≤ ‖φ‖∞.
Throughout the paper we assume that k ≥ 2. Define Wk : L2(T) −→ L2(T)

by

Wk(zkn+p) =

{
zn if p = 0

0 if p > 0

for all integers n, p such that 0 ≤ p < k. One can refer [1] to find that Wk is
a bounded linear operator with ‖Wk‖ = 1 and the adjoint of Wk is given by
W ∗k (zn) = zkn for all integers n.
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The kth-order slant Toeplitz operator SkTφ [1] and kth-order slant Hankel

operator SkHφ [3] on H2(T) with symbol φ are defined as

SkTφ = WkTφ and SkHφ = WkHφ.

Let B(X,Y ) be the set of all bounded linear operators from a complex
Banach space X to a complex Banach space Y (if X = Y , then denote it by
B(X)). An operator T ∈ B(X,Y ) is Fredholm operator if Range T is closed,
dimensions of Kernel T and cokernel T are finite. In this case, index of T is
defined as

ind T = dim(Kernel T )− dim(cokernel T ).

2. Generalized (slant Toeplitz + slant Hankel) operators on H2(T)

In this section, the kth-order (slant Toeplitz + slant Hankel) operators on
H2(T) are defined and their basic properties are studied.

Definition. Let φ, ξ ∈ L∞(T). For all f ∈ H2(T), a linear operator SkM(φ,ξ) :

H2(T) −→ H2(T) defined by

SkM(φ,ξ)(f) = SkTφ(f) + SkHξ(f) = WkP (Mφ +MξJ)(f)

is said to be kth-order (slant Toeplitz + slant Hankel) on H2(T). Evidently
the operator SkM(φ,ξ) is bounded and

‖SkM(φ,ξ)‖ = ‖SkTφ + SkHξ‖ ≤ ‖φ‖∞ + ‖ξ‖∞.
Since Tφ and Hφ can be represented as Tφ = PMφP and Hφ = PMφJP , there-
fore, we shall use the notation SkM(φ,ξ)(f) = WkP (Mφ + MξJ)P throughout

the paper. If φ = ξ, then it is denoted by SkM(φ) simply. Also, for k = 2 the

operator SkM(φ,ξ) is denoted by SM(φ,ξ).

Define ĝ(z) = g(z̄) and g(z) = g(z) for all functions g. In [4], it is proved
that

(1) M(φξ) =M(φ)M(ξ) +HφM(ξ̂ − ξ).
Now applying Wk on both sides of the Eq. (1), we get

(2) SkM(φξ) = SkM(φ)M(ξ) + SkHφM(ξ̂ − ξ).

Let am,n denote (m,n)thm,n≥0 entry of the matrix representation of SkM(φ,ξ)

with respect to the standard orthonormal basis {en = zn}∞n=0 of H2(T). Let
φ(z) =

∑
n∈Z φnz

n and ξ(z) =
∑
n∈Z ξnz

n be functions in L∞(T), then for all

non-negative integers m,n, we have
〈
SkTφz

n, zm
〉

= φkm−n and
〈
SkHξz

n, zm
〉

=

ξkm+n+1. Therefore,

am,n =
〈
SkM(φ,ξ)z

n, zm
〉

=
〈
SkTφz

n, zm
〉

+
〈
SkHξz

n, zm
〉

= φkm−n + ξkm+n+1
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and hence the matrix of kth-order (slant Toeplitz + slant Hankel) operator on
H2(T) is given by

(3) [SkM(φ,ξ)] =


φ0 + ξ1 φ−1 + ξ2 φ−2 + ξ3 · · ·
φk + ξk+1 φk−1 + ξk+2 φk−2 + ξk+3 · · ·
φ2k + ξ2k+1 φ2k−1 + ξ2k+2 φ2k−2 + ξ2k+3 · · ·
φ3k + ξ3k+1 φ3k−1 + ξ3k+2 φ3k−2 + ξ3k+3 · · ·

...
...

... · · ·

 .
Proposition 2.1. Let φ, ξ ∈ L∞(T). Then the following hold:

(1) ‖φ‖∞ ≤ ‖SkM(φ)‖ ≤
√

2‖φ‖∞.
(2) The mapping Γ : L∞(T) → B(H2(T)) defined by Γ(φ) = SkM(φ) is

linear and one-one.
(3) am,n + am+2,n = am+1,n−k + am+1,n+k for all integers m ≥ 0, n ≥ k,

where am,n is the (m,n)thm,n≥0 entry of the matrix representation of

SkM(φ,ξ) with respect to basis {en}∞n=0 of H2(T).

Proof. (1) By ([4], Proposition 2.1), we have ‖φ‖∞ ≤ ‖M(φ)‖ ≤
√

2‖φ‖∞.

Since ‖Wk‖ = 1, therefore, ‖SkM(φ)‖ ≤
√

2‖φ‖∞. Let Un = Mzn on L2(T).

Then

U−nSMk(φ)Un = U−nWkPMφPUn + U−nWkPMφJPUn

= (U−nWkUn)(U−nPUn)(U−nMφUn)(U−nPUn)

+ (U−nWkUn)(U−nPU−n)(UnMφJUn)(U−nPUn).

Since U−nMφUn = Mφ, UnMφJUn = MφJ , U−nPUn → I and U−nPU−n → 0
strongly on L2(T) as n→∞, therefore we have

U−nS
k
M(φ)Un → U−nWkUnMφ = U−nWkMφUn

strongly as n→∞. Since U±n are isometries on L2(T), therefore, ‖SkM(φ)‖ ≥
‖φ‖∞.

(2) From the linearity of Γ and by part (1), the result follows.
(3) From matrix 3, it follows that am,n+am+2,n = am+1,n−k +am+1,n+k for

all integers m ≥ 0, n ≥ k. �

3. Fredholm properties of kth-order (slant Toeplitz + slant Hankel)
operators

This section is devoted to the study of spectral properties of kth-order (slant
Toeplitz + slant Hankel) operators on H2(T). In the following theorem, we
show that a non-invertible function φ ∈ L∞(T) cannot induce a Fredhom kth-
order (slant Toeplitz + slant Hankel) operator. As a consequence of this, it
follows that if SkM(φ) is an invertible operator, then φ is invertible.

Theorem 3.1. Let φ ∈ L∞(T). If the operator SkM(φ) is a Fredholm operator,

then φ is invertible.
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Proof. Let SkM(φ) be a Fredholm operator, therefore, there exist ε > 0 and a

finite rank operator R on KerSkM(φ) such that

‖SkM(φ)f‖+ ‖Rf‖ ≥ ε‖f‖

for all f ∈ H2(T). For all f ∈ L2(T), we obtain that

ε‖f‖ = ε‖(I − P )f‖+ ε‖Pf‖

≤ ε‖(I − P )f‖+ ‖SkM(φ)Pf‖+ ‖PRPf‖

= ‖SkM(φ)f‖+ ‖PRPf‖+ ε‖(I − P )f‖.

Now replacing f by Unf and using the fact that ‖U±n‖ = 1 for all integers n,
we get that

ε‖f‖ = ε‖Unf‖

≤ ‖SkM(φ)Unf‖+ ‖PRPUnf‖+ ε‖(I − P )Unf‖

= ‖U−nSkM(φ)Unf‖+ ‖PRPUnf‖+ ε‖U−n(I − P )Unf‖.
Since Un → 0 weakly as n → 0 and PRP is a compact operator, therefore,
PRPUn → 0 strongly as n → 0. Also, U−nPUn → I strongly as n → 0,
‖Wk‖ = 1 and ‖U±n‖ = 1. Hence, ε‖f‖ ≤ ‖U−nSkM(φ)Unf‖ but proceeding

in the similar manner as in the proof of Proposition 2.1(1), we obtain that
U−nS

k
M(φ)Un → U−nWkMφUn strongly on L2(T) as n → ∞. Therefore, it

follows that ε‖f‖ ≤ ‖Mφf‖. Hence, φ is invertible in L∞(T). �

Let

H2
c(T) =

{∑
n∈Z

ane
inθ ∈ L2(T) | an = 0 for all integers n ≥ 0

}
and

Ĥ2(T) =

{∑
n∈Z

ane
inθ ∈ L2(T) | an = 0 for all integers n > 0

}
.

For φ ∈ L∞(T), define the set Aφ = {z ∈ T |φ(z) = 0 = φ̂(z)} then the
characteristic function χAφ is real and χAφ = χ̂Aφ on T. Therefore, from Eq.
(1), it follows that 0 = M(φχAφ) = M(φ)M(χAφ) and hence, ImM(χAφ) ⊆
KerM(φ).

Theorem 3.2. Let φ ∈ L∞(T). Then either KerM(φ) = ImM(χAφ) or

SkM(φ)

∗
is one-one.

Proof. Suppose KerSkM(φ)

∗ 6= {0} then there exists a non-zero h ∈ H2(T)

such that SkM(φ)

∗
h = 0. Let g ∈ H2(T) such that g ∈ KerM(φ). Define the

functions

g1(z) = (I + J)g(z), g2(z) = Mφg1(z),
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h1(z) = Mφ̄W
∗
k h(z), h2(z) = (I + J)h1(z).

Clearly Pg2 = 0 and Ph2 = 0 giving g2, h2 ∈ H2
c (T). Using J2 = I, we

have Jg1 = g1 and Jh2 = h2 but h2 ∈ H2
c (T), therefore, h2 = 0. This gives

Jh1 = −h1 which means g1(z) = z̄g1(z̄) and −h1(z) = z̄h1(z̄). From this it
follows that

(4) g1h1(z̄) = −g1h1(z)

but g1h1(z) = g1φW ∗k h(z) = g2W
∗
k h(z) where h ∈ H2(T) implies W ∗k h ∈

Ĥ2(T). Since g2 ∈ H2
c (T), therefore, g2W

∗
k h ∈ H1

c (T) and hence by Eq. (4)

it follows that g2W
∗
k h = 0, but h ∈ H2(T) and h 6= 0 implies W ∗k h 6= 0,

therefore, by F. and M. Riesz Theorem [9], we have W ∗k h 6= 0 a.e on T. This

gives g2 = 0 implies φg1 = 0. Now φ̂(z)g1(z) = z̄φ(z̄)g1(z̄) = 0. Therefore,
(1− χAφ)g1(z) = 0 implies MχAφg = g and hence, g ∈ ImM(χAφ). �

As a consequence of Theorem 3.2 and using the fact that if M(φ) is Fred-
holm, then φ is invertible in L∞(T) for φ ∈ L∞(T) [4], we obtain the following:

Corollary 3.3. Let φ ∈ L∞(T). If M(φ) is Fredholm, then either M(φ) is

one-one or SkM(φ)

∗
is one-one.

The well known Coburn’s theorem states that for a non-zero Toeplitz oper-
ator Tφ on H2(T), either kernel of Tφ is {0} or kernel of T ∗φ is {0}. One can

refer to Chapter 7 of [7] for Coburn’ theorem for Toeplitz operators and related
results. The following result shows that under some conditions on function φ,
the Coburn type theorem also holds for SM(φ).

Theorem 3.4. (Coburn Type Theorem for SM(φ)) If φ ∈ L∞(T) is such that

φ(z) = ξ(z2) for some ξ ∈ L∞(T) and φ is invertible, then either SM(φ) is
one-one or SM(φ)

∗ is one-one.

Proof. If KerSM(φ)
∗ 6= {0}, then there exists a non-zero h ∈ H2(T) such that

SM(φ)
∗h = 0. Using the same argument as in Theorem 3.2 for k = 2, we get

(5) g1h1(z̄) = −g1h1(z)

but g1h1(z) = g1φW ∗2 h(z) = g1φW
∗
2 h(z). Now applying W2 on both sides of

Eq. (5), we obtain that

(6) W2g1h1(z̄) = −W2g1h1(z).

Let P2 denote the projection of L2(T) onto the closed linear span of {z2n |n ∈
Z}. Since φ ∈ L∞(T) and by reframing a property of W2 [8] which states that
if either f or g is in L∞(T), then W2(fg) = W2(f)W2(g) + zW2(z̄f)W2(z̄g) =
W2(f)W2(g) +W2((I − P2)f.(I − P2)g) [8], we get

W2g1h1 = W2(g1φW
∗
2 h) = W2(g1φ)W2(W ∗2 h) +W2[(I −Pk)g1φ.(I −P2)W ∗2 h].

By using the definition of W ∗2 , we have (I − P2)W ∗2 h = 0, therefore we ob-
tain that W2g1h̄1(z) = W2(g1φ)W2(W ∗2 h)(z) = W2(g1φ)h)(z) = g2(z)h(z) and
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hence from Eq. (6) it follows that g2h(z̄) = −g2h(z) but h ∈ Ĥ2(T) and
g2 ∈ H2

c (T), therefore, g2h ∈ H1
c (T) and hence, g2h = 0 but h ∈ H2(T)

and h 6= 0, therefore, by F. and M. Riesz Theorem [9], we have h 6= 0 a.e
on T. This gives g2 = 0 which implies W2(φg1) = 0. Since W2(φg1) =
W2(φ)W2(g1) +W2[(I − P2)φ.(I − P2)g1], therefore,

(7) W2(φ)W2(g1) = 0

as φ2n+1 = 0 for all integers n, where φ2n+1 is the Fourier coefficient of φ
with respect to z2n+1 and this implies (I − P2)φ = 0. On applying W ∗2 on
both sides of Eq. (7), we get 0 = W ∗2 (W2(φ)W2(g1)) = W ∗2W2(φ)W ∗2W2(g1) =
φW ∗2W2(g1) but it is assumed that φ is invertible in L∞(T). Hence, W ∗2W2(g1)
= 0 gives g = 0. �

4. Commutativity of kth-order (slant Toeplitz + slant Hankel)
operators

In this section, we are dealing with the commutative property of kth-order
(slant Toeplitz + slant Hankel) operators and we show that these types of
operators commute if and only if their symbol functions are scalar multiple of
each other.

Theorem 4.1. Let φ(z) =
∑n
j=−m ajz

j and ξ(z) =
∑n
j=−m bjz

j be such that

φ, ξ ∈ L∞(T), where n and m are non-negative integers and an, bn, a−m, b−m 6=
0. Then, SkM(φ) and SkM(ξ) commute if and only if φ and ξ are scalar multiple

of each other.

Proof. If ξ = λφ for some scalar λ, then it is obvious that SkM(φ) and SkM(ξ)

commute. Conversely, suppose that SkM(φ) and SkM(ξ) commute. Therefore,

(8) SkM(φ)

∗
SkM(ξ)

∗
(zn+m) = SkM(ξ)

∗
SkM(φ)

∗
(zn+m).

Now

SkM(φ)

∗
SkM(ξ)

∗
(zn+m)

= P (I + J)LφPW
∗
kP (I + J)LξPW

∗
k (zn+m)

= P (I + J)LφPW
∗
kP (I + J)

 n∑
j=−m

bj z̄
jzkn+km


= P (I + J)LφPW

∗
kP (I + J)

 kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
j


= P (I + J)LφPW

∗
kP

 kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
j +

kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
−j−1


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= P (I + J)LφPW
∗
k

 kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
j


= P (I + J)Lφ

 kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
kj


= P (I + J)

 n∑
i=−m

aiz̄
i

kn+(k+1)m∑
j=(k−1)n+km

bkn+km−jz
kj


=

kn+(k+1)m∑
j=(k−1)n+km

kj+m∑
i=kj−n

akj−ibkn+km−jz
i

=

k(k−1)n+(k2+1)m∑
i=(k2−k−1)n+k2m

ak(k−1)n+km−ibnz
i

+

k(k−1)n+(k2+1)m+k∑
i=(k2−k−1)n+k2m+k

ak(k−1)n+km+k−ibn−1z
i + · · ·

+

k2n+(k2+k+1)m∑
i=(k2−1)n+k(k+1)m

ak2n+k(k+1)m−ib−mz
i.(9)

Similar calculations give

SkM(ξ)

∗
SkM(φ)

∗
(zn+m) =

kn+(k+1)m∑
j=(k−1)n+km

kj+m∑
i=kj−n

bkj−iakn+km−jz
i

=

k(k−1)n+(k2+1)m∑
i=(k2−k−1)n+k2m

bk(k−1)n+km−ianz
i

+

k(k−1)n+(k2+1)m+k∑
i=(k2−k−1)n+k2m+k

bk(k−1)n+km+k−ian−1z
i + · · ·

+

k2n+(k2+k+1)m∑
i=(k2−1)n+k(k+1)m

bk2n+k(k+1)m−ia−mz
i.(10)

Since {zn}∞n=0 forms an orthonormal basis, therefore, on using Eqs. (8), (9)
and (10) and on comparing the coefficients of zn+4m+1, zn+4m+2, zn+4m+3, . . . ,
z4n+7m−2, z4n+7m−1 on both sides, it follows that

an−1bn = bn−1an,

an−2bn + anbn−1 = bn−2an + bnan−1,
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an−3bn + an−1bn−1 = bn−3an + bn−1an−1,

...

a−mb−m+1 + a−m+2b−m = b−ma−m+1 + b−m+2a−m,

a−m+1b−m = b−m+1a−m.

This yields
bp
ap

= λ for all −m ≤ p ≤ n − 1, where λ = bn
an

. Hence, ξ(z) =

λφ(z). �

Now, we present a lemma which is instrumental in proving our main result
(Theorem 4.4). The following lemma is true for k = 2 but we obtain the same
result for k ≥ 2.

Lemma 4.2. Let φ(z) =
∑n
j=−m ajz

j and ξ(z) =
∑r
j=−s bjz

j be such that

φ, ξ ∈ L∞(T) where n,m, r, s are non-negative integers. If SM(φ) and SM(ξ)

commute, then aj = 0 and bj = 0 for all integers j < −min{m, s} or min{n, r}
< j (if any such aj or bj exists).

Proof. If any of φ and ξ is equal to zero, then the result follows trivially.
Suppose none of φ and ξ is zero. Since SM(φ) and SM(ξ) commute, therefore,

(11)
SM(φ)

∗SM(ξ)
∗(zmax{n,r}+max{m,s})

= SM(ξ)
∗SM(φ)

∗(zmax{n,r}+max{m,s}).

Then the following four cases arise:

(1) n ≥ r and m ≥ s;
(2) n ≥ r and m < s;
(3) n < r and m ≥ s;
(4) n < r and m < s.

Case I: If n ≥ r and m ≥ s, then let n− r = x ≥ 0. Now

SM(φ)
∗SM(ξ)

∗(zmax{n,r}+max{m,s})

= SM(φ)
∗SM(ξ)

∗(zn+m)

= P (I + J)LφPW
∗
2 P (I + J)LξPW

∗
2 (zn+m)

= P (I + J)LφPW
∗
2 P (I + J)

 r∑
j=−s

bj z̄
jz2n+2m


= P (I + J)LφPW

∗
2 P (I + J)

 2n+2m+s∑
j=2n+2m−r

b2n+2m−jz
j


= P (I + J)LφPW

∗
2 P (I + J)

 2n+2m+s∑
j=n+2m+x

b2n+2m−jz
j


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= P (I + J)Lφ

 2n+2m+s∑
j=n+2m+x

b2n+2m−jz
2j


= P (I + J)

 n∑
i=−m

aiz̄
i

2n+2m+s∑
j=n+2m+x

b2n+2m−jz
2j


=

2n+2m+s∑
j=n+2m+x

2j+m∑
i=2j−n

a2j−ib2n+2m−jz
i

=

2n+5m+2x∑
i=n+4m+2x

a2n+4m+2x−ibrz
i

+

2n+5m+2x+2∑
i=n+4m+2x+2

a2n+4m+2x−i+2br−1z
i + · · ·

+

4n+5m+2s∑
i=3n+4m+2s

a4n+4m+2s−ib−sz
i.(12)

Consider

SM(ξ)
∗SM(φ)

∗(zmax{n,r}+max{m,s})

= SM(ξ)
∗SM(φ)

∗(zn+m)

= P (I + J)LξPW
∗
2 P (I + J)LφPW

∗
2 (zn+m)

= P (I + J)LξPW
∗
2 P (I + J)

 n∑
j=−m

aj z̄
jz2n+2m


= P (I + J)LξPW

∗
2 P (I + J)

 2n+3m∑
j=n+2m

a2n+2m−jz
j


= P (I + J)Lξ

 2n+3m∑
j=n+2m

a2n+2m−jz
2j


= P (I + J)

 r∑
i=−s

biz̄
i

2n+3m∑
j=n+2m

a2n+2m−jz
2j


=

2n+3m∑
j=n+2m

2j+s∑
i=2j−r

b2j−ia2n+2m−jz
i

=

2n+4m+s∑
i=n+4m+x

b2n+4m−ianz
i +

2n+4m+s+2∑
i=n+4m+x+2

b2n+4m−i+2an−1z
i + · · ·
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+

4n+6m+s∑
i=3n+6m+x

b4n+6m−ia−mz
i.(13)

Since {zn}∞n=0 forms an orthonormal basis, therefore, by using Eqs. (11), (12)
and (13), it follows that the coefficients of zn+4m+x+p are zeroes for all integers
0 ≤ p < x for x > 0. This gives

bn−xan = 0,

bn−x−1an = 0,

bn−x−2an + bn−xan−1 = 0,

bn−x−3an + bn−x−1an−1 = 0,

bn−x−4an + bn−x−2an−1 + bn−xan−2 = 0,

... .

(14)

If an 6= 0, we have bn−x = br = 0 and subsequently br = br−1 = · · · =
br−x+1 = 0. On comparing the coefficients of zn+4m+2x, zn+4m+2x+1, . . . etc.,
it is concluded that bp = 0 for all r ≤ p ≤ −s. It means ξ = 0 which is a
contradiction. Hence, an = 0. Observe that (4n+ 6m+ s)− (4n+ 5m+ 2s) =
m − s ≥ 0, so from Eqs. (12) and (13), it follows that the coefficients of
z4n+5m+2s+1, z4n+5m+2s+2, . . . , z4n+6m+s are zeroes. Hence by using Eq. (14),
we obtain that ap = 0 for all p > r or p < −s.

The other 3 cases follow on similar lines. �

The above lemma also holds for k ≥ 2 and it is stated as follows:

Lemma 4.3. Let φ(z) =
∑n
j=−m ajz

j and ξ(z) =
∑r
j=−s bjz

j be such that

φ, ξ ∈ L∞(T) where n,m, r, s are non-negative integers. If SkM(φ) and SkM(ξ)

commute, then aj = 0 and bj = 0 for all integers j < −min{m, s} or min{n, r}
< j (if any such aj or bj exists).

Theorem 4.4. Let φ(z) =
∑n
j=−m ajz

j and ξ(z) =
∑r
j=−s bjz

j be such that

φ, ξ ∈ L∞(T) where n,m, r, s are non-negative integers. Then SkM(φ) and SkM(ξ)

commute if and only if ξ is a scalar multiple of φ.

Proof. Let φ = λξ for some scalar λ then it is obvious that SkM(φ) and SkM(ξ)

commute. Conversely, suppose that SkM(φ) and SkM(ξ) commute. Then by

Lemma 4.3, it follows that aj = 0 and bj = 0 for all integers j < −min{m, s}
or min{n, r} < j (if any such aj or bj exists), that is, φ(z) =

∑min{n,r}
j=−min{m,s} ajz

j

and ξ(z) =
∑min{n,r}
j=−min{m,s} bjz

j . Hence by Theorem 4.1, we conclude the result.

�
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