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A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC

FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS

IN C
2

Ly Kim Ha

Abstract. Let Ω be a bounded, uniformly totally pseudoconvex domain
in C

2 with the smooth boundary bΩ. Assuming that Ω satisfies the neg-
ative ∂̄ property. Let M be a positive, finite area divisor of Ω. In this
paper, we will prove that: if Ω admits a maximal type F and the Čeck
cohomology class of the second order vanishes in Ω, there is a bounded
holomorphic function in Ω such that its zero set is M . The proof is based
on the method given by Shaw [27].

1. Introduction. Statement of results

Let Ω be a smooth, bounded domain in C
2 and let M be a positive divisor

of Ω. In this paper, we concern with the problem is to find some conditions
on Ω, such that there exists a bounded holomorphic function g defined on Ω
whose zero set Z(Ω, g) is M .

In the earlier work [10], the existence of a Nevanlinna holomorphic function
defining M is established when Ω is uniformly totally pseudoconvex and admits
a maximal type F (see Definition 2.2) at all boundary points. Here, the maxi-
mal type F coincides with the notion of finite type in the sense of Range [21]
for F (t) = tm and the notion of infinite type for F (t) = exp(−1

ts ), 0 < s < 1/2.
More precisely, we have:

Theorem 1.1. Let Ω be a smoothly bounded, uniformly totally pseudoconvex

domain which admits the maximal type F at all boundary points, for some func-

tion F . Assuming that Ω̄ admits a Stein neighborhood basis and the negative

∂̄ property (see Definition 2.4), and the Čech cohomology class of the second

degree H2(Ω,Z) = 0. Let M be a positive, finite area divisor in Ω. Then, for

some bounded holomorphic function g on Ω, we have

M = Z(Ω, g).
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Theorem 1.1 is a result of the following boundary regularity for solutions to
the Poincaré-Lelong equation.

Theorem 1.2. Let Ω be a smoothly bounded, uniformly totally pseudoconvex

domain which admits the maximal type F at all boundary points, for some

function F . Assuming that Ω̄ admits a Stein neighborhood basis and the nega-

tive ∂̄ property holds on Ω, and the DeRham cohomology of the second degree

H2(Ω,R) = 0. Let α be a positive d-closed, smooth (1, 1)-form on Ω̄, then the

Poincaré - Lelong equation

i∂∂̄u = α

admits a negative solution u such that:

||u||L1(bΩ) + ||u||L1(Ω) ≤ C||α||L1(Ω),

where C is independent in α.

The paper is organized as follows: In Section 2, we recall and introduce the
materials which are used in the paper. In Section 3, we prove Theorem 1.2.
Theorem 1.1 is proven in Section 4.

2. Preliminaries

2.1. The tangential Cauchy-Riemann equation

Let Ω be a bounded pseudoconvex domain in C
2 with smooth boundary bΩ.

Let ρ be a defining function for Ω such that Ω = {z ∈ C
2 : ρ(z) < 0} and

∇ρ 6= 0 on bΩ = {z ∈ C
2 : ρ(z) = 0}, and ∇ρ ⊥ bΩ. The pseudoconvexity

means on bΩ we have

〈∂∂̄ρ, L ∧ L̄〉 ≥ 0,

where L is an any nonzero tangential holomorphic vector field. If the strict
inequality holds on the boundary, Ω is said to be strongly pseudoconvex.

Definition 2.1 ([21]). Ω is said to be uniformly totally pseudoconvex at the
point P ∈ bΩ if there are positive constants δ, c and a C1 map Ψ : U δ×Ωδ → C

such that for all boundary points ζ ∈ bΩ∩B(P, δ), the following properties are
satisfied:

(1) Ψ(ζ, .) is holomorphic on Ω;
(2) Ψ(ζ, ζ) = 0, and dzΨ|z=ζ 6= 0;
(3) ρ(z) > 0 for all z with Ψ(ζ, z) = 0 and 0 < |z − ζ| < c.

By multiplying ρ and Ψ by suitable non-zero functions of ζ, one may
assume more

(4) |∂ρ(ζ)| = 1, and ∂ρ(ζ) = dzΨ|z=ζ,

where Ωδ = {z ∈ C
2 : ρ(z) < δ}, and U δ = Ωδ \ Ω.

Definition 2.2 ([9, 10]). Let F : [0,∞) → [0,∞) be a smooth, increasing
function such that

(1) F (0) = 0;
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(2)
∫ R

0 | lnF (r2)|dr < ∞ for some R > 0;

(3) F (r)
r is increasing.

Let Ω ⊂ C
2 be uniformly totally pseudoconvex at P ∈ bΩ. Ω is called a

domain admitting maximal type F at the boundary point P ∈ bΩ if there are
positive constants c, c′, such that, for all ζ ∈ bΩ ∩B(P, c′) we have

ρ(z) & F (|z1 − ζ1|2) for all z ∈ B(ζ, c) with Ψ(ζ, z) = 0.

Here and in what follows, the notations . and & denote inequalities up to
a positive constant, and ≈ means the combination of . and &.

Example 2.1.

(1) Let Ω ⊂ C
2 be pseudoconvex of strict finite type m(p) at every point

p ∈ bΩ as defined in [17], and generalized by Range in [21, 22], Shaw
in [26]. And let m0 := sup

p∈bΩ
m(p) < ∞ and F (t) = tm0/2. We define

Ψ(ζ, z) =
∑

s+t≤m0

1

s!t!

∂s+tρ

∂ζs1∂ζ
k
2

(z1 − ζ1)
s(z2 − ζ2)

k.

Then Ω, in this case, admits the maximal type F . In particular, Ω is
finite type in the sense of Range.

(2) Let

Ω∞ = {(z1, z2) ∈ C
2 : exp(1 + 2/s) · exp

( −1

|z1|s
)

+ |z2|2 − 1 < 0}.

Then, for 0 < s < 1/2, Ω∞ is a convex domain admitting the maximal

type F (t) = exp(
−1

32.ts
), see [29].

It is well-known that on infinite type domains in the sense of Range, e.g.
the domain Ω∞, the ∂̄ and ∂̄b have no solution in any Hölder class of any
positive order. Therefore, the following definitions are necessary to understand
pointwise boundary regularities of ∂̄b-solutions on such domains.

Let f be an increasing function such that limt→+∞ f(t) = +∞. We define
the f -Hölder space on bΩ by

Λf (bΩ) =











u ∈ L∞(bΩ) : ||u||L∞ + sup
x(.)∈C
0≤t≤1

f(t−1)|u(x(t)) − u(x(0))| < +∞











,

where the class of curves C in bΩ is

C =
{

x(t) : t ∈ [0, 1] → x(t) ∈ bΩ, x(t) is C1 and |x′(t)| ≤ 1
}

.

That means Λf (bΩ) consists all complex-valued functions u such that for each
curve x(·) ∈ C, the function t 7→ u(x(t)) ∈ Λf ([0, 1]).
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For 1 ≤ p < ∞, the f -Besov space is denoted by

Λf
p(bΩ) = {u ∈ Lp(bΩ) :

||u||Lp + sup
0≤t≤1

f(t−1)

[

(
∫

bΩ

|u(x(t)) − u(x(0))|pdx
)1/p

]

< +∞
}

,

where the integral is taken in x = x(t) ∈ C over the boundary bΩ. It is obvious
that Λf

∞(bΩ) = Λf (bΩ). In the cases f(t) = tm for m = 1, 2, . . ., Λf are really
usual Hölder spaces or Besov spaces on bΩ.

The following global solvability of the tangential Cauchy-Riemann equations
on the boundary bΩ in Lp-spaces was proved in [9]:

Theorem 2.3. Let Ω be a smoothly bounded, uniformly totally pseudoconvex

domain admitting maximal type F , for some function F . Assuming that Ω̄
admits a Stein neighborhood basis. Let ϕ belong to Lp

0,1(bΩ), for 1 ≤ p ≤ ∞,

and satisfy the compatibility condition
∫

bΩ

ϕ ∧ α = 0

for every ∂̄-closed (2, 0)-form α defined on Ω and being continuous up to bΩ.
Let F ∗ be the inversion of F , and let

f(d−1) :=

(

∫ d

0

√

F ∗(t)

t
dt

)−1

.

Then, there exists a function u defined on bΩ such that ∂̄bu = ϕ on bΩ and

(1) ||u||Λf (bΩ) ≤ C||ϕ||L∞(bΩ), if p = ∞.

(2) ||u||Lp(bΩ) ≤ Cp||ϕ||Lp

(0,1)
(bΩ), if 1 ≤ p < ∞, where Cp > 0 independent

on ϕ.
(3) ||u||Λf

p(bΩ) ≤ Cp||ϕ||Lp(bΩ) for every 1 ≤ p ≤ ∞.

For examples,

• For m = 1, 2, . . ., let

Ωm = {(z1, z2) ∈ C
2 : |z1|2m + |z2|2 < 1}.

Then Ω is smoothly bounded, convex domain admitting the maximal
type F (t) = tm, and so f(t) = t1/m.

• Let recall

Ω∞ = {(z1, z2) ∈ C
2 : exp(1 + 2/s) · exp

( −1

|z1|s
)

+ |z2|2 − 1 < 0}

for 0 < s < 1/2, Ω∞ is a convex domain admitting the maximal type

F (t) = exp
(

−1
32·ts

)

. Then, f(t) = 1024s(1−2s)
2s (| ln t|)

1

2s
−1

.

Definition 2.4. Ω is called satisfying the negative ∂̄ property if and only if
for every solution of ∂̄u = φ, there is a pluriharmonic function λ defined on Ω̄
such that:
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• (2 · Im(u) + λ) is negative.
• ||λ||L1(bΩ) + ||λ||L1(Ω) . ||φ||L1(Ω) + ||φ||L1(bΩ).

2.2. Some basic facts of Lelong theory

For the following notions and results, we refer to [28] or [20].

Definition 2.5. Let M := {Mj} be a locally finite family of hypersurfaces of
Ω. The formal sum

∑

j

ajMj

with aj ∈ Z is called a divisor of Ω.
For a given divisor M of Ω there are uniquely distinct irreducible hypersur-

faces {Mj} of Ω and aj ∈ Z \ {0} such that we have the following irreducible
decomposition

M =
∑

aj 6=0

ajMj .

If M =
∑

aj 6=0 ajMj with aj > 0 for all j, we call M to be a positive divisor of

Ω, and write M > 0.

For example, let h be a holomorphic function on Ω. Then the hypersurface
Mh := {z ∈ Ω : h = 0} is a positive divisor, and

Mh =
∑

aj 6=0

ajMj,

where aj > 0 is the zero order of h on Mj. In this case, Mh is also called the
zero divisor of Ω.

Theorem 2.6 (Cartan). Let Ω be a smoothly bounded domain in C
n. If the

cohomology group H2(Ω,Z) = 0, and M is a positive divisor of Ω, then

M = Z(Ω, g)

for some holomorphic function g defined on Ω.

Theorem 2.7 (Poincaré-Lelong Formula [20]). Let Ω be a smoothly bounded

domain in C
n. Let h 6= 0 be a meromorphic function on Ω and let η be a 2-form

of C2 class on Ω with compact support. Then,

1

2π
∂∂̄[log |h|2] = Mh,

that is
∫

Mh

η =
1

2π

∫

Ω

log |h|2∂∂̄η =
1

2π

∫

Ω

∂∂̄[log |h|2] ∧ η

in this sense of currents.
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Definition 2.8. Let M =
∑

aj 6=0 ajMj be a divisor of Ω and dδ be the surface

measure on M . Then, M is called to have finite area if

∑

aj 6=0

aj

∫

z∈Mj

dδ(z)

is finite.

In [1], the negative ∂̄ property holds on all balls in C
2. Hence, we have:

Theorem 2.9 ([1]). Assuming that Ω is a ball in C
2. Let M be finite area,

positive divisor in Ω. Then M is defined by a bounded holomorphic function.

Theorem 2.10 ([10]). Let Ω be a smoothly bounded, uniformly totally pseudo-

convex domain admitting maximal type F at all boundary points, and the Čech

cohomology group of second degree H2(Ω,Z) = 0. Assuming that Ω̄ admits a

Stein neighborhood basis. If M is a finite area, positive divisor of Ω, then for

some Nevanlinna holomorphic function g, we have

M = Z(Ω, g).

3. Proof of Theorem 1.2

For convenience, we recall the following fact which is proved in [10] by using
the Bochner-Martinelli-Koppelman kernel. Note that this result was proved
without the negative ∂̄ property.

Theorem 3.1. Let Ω be a smoothly bounded, uniformly totally pseudoconvex

domain admitting maximal type F at all boundary points, for some function

F . Assuming that Ω̄ admits a Stein neighborhood basis. Let ϕ be a continuous

(0, 1)-form on Ω and satisfy ∂̄ϕ = 0, then there exists a function u ∈ Λf (Ω)
such that

∂̄u = ϕ,

where

f(d−1) :=

(

∫ d

0

√

F ∗(t)

t
dt

)−1

,

with F ∗ be the inversion of F .

Moreover, we also have:

(i) ||u||L1(Ω) ≤ C(||ϕ||L1(Ω) + ||ϕ||L1(bΩ)).
(ii) ||u||Lp(bΩ) ≤ Cp||ϕ||Lp(bΩ) for all 1 ≤ p ≤ +∞.
(iii) ||u||Λf

p(bΩ) ≤ Cp||ϕ||Lp(bΩ) for all 1 ≤ p ≤ +∞.

Since H2(Ω,R) = 0, we can apply the Poincaré-Cartan lemma, in local
sense, from the well-known global construction of Weil [30] for H2(Ω,R).
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Let K be the Poincaré-Cartan homotopy operator defined in [5], page 36.
Let α =

∑

ij αijdzi ∧ dz̄j be a positive, smooth (1, 1)-form on Ω such that
dα = 0, then
(3.1)

Kα(z) =
∑

j

(

∑

i

∫ 1

0

tαij(tz)dtzi

)

dz̄j −
∑

i





∑

j

∫ 1

0

tαij(tz)dtz̄j



 dzi,

and
dKα(z) = α(z).

Because of the positivity of α, we obtain
(3.2)

Kα(z) =
∑

j

(

∑

i

∫ 1

0

tαij(tz)dtzi

)

dz̄j −
∑

j

(

∑

i

∫ 1

0

tαij(tz)dtzi

)

dz̄j .

In short, Kα(z) = F(z) + F(z), where

F(z) =
∑

j

(

∑

i

∫ 1

0

tαij(tz)dtzi

)

dz̄j .

Moreover, as a consequence of the d-closed property of α,

(3.3) ∂̄F = ∂F = 0.

By a changing of coordinates bΩ× [0, 1] → Ω, we also obtain

(3.4) ||F||L1(bΩ) . ||α||L1(Ω) and ||F||L1(Ω) ≤ ||α||L1(Ω).

From the estimates (3.3), (3.4) and the existence in Theorem 3.1, there is a
function v ∈ L1(Ω̄) solving the equation ∂̄v = F on Ω̄ and satisfying

(3.5)
||v||L1(Ω) + ||v||L1(bΩ) . ||F||L1(Ω) + ||F||L1(bΩ)

. ||α||L1(Ω).

Now, we define U = 2Im(v), then

||U ||L1(bΩ) + ||U ||L1(Ω) . ||α||L1(Ω).

Then,

(3.6)

α = d(Kα) = ∂F + ∂̄F̄
= ∂(∂̄v) + ∂̄(∂v̄)

= i∂∂̄

(

v − v̄

i

)

= i∂∂̄U.

Moreover, by the negative ∂̄ property, there exists a pluriharmonic function λ
such that u := (2Im(U) + λ) is negative, i∂∂̄u = α and

||u||L1(bΩ) + ||u||L1(Ω) . ||φ||L1(bΩ) + ||φ||L1(bΩ).
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This completes the proof.

4. Proof of Theorem 1.1

By the Poincaré-Lelong Formula, let αM be the closed (1, 1) positive current
associated with M . That means, for some holomorphic function h on Ω which
has zero set M , we have

αM =
i

π
∂∂̄[log |h|]

in the sense of currents.
Let

Vǫ(z) = log |h| ∗ χǫ(z)

be the smooth regularity of log |h(z)|, where for each ǫ > 0, χǫ ∈ C∞
c (R) is a

non-negative function such that χǫ is supported on [−ǫ/2, ǫ/2], and
∫

R
χǫ(x)dx

= 1. Then, Vǫ is smooth on Ωǫ = {ρ(z) < −ǫ} ⋐ Ω and Vǫ(z) → log |h(z)| as
ǫ → 0+.

For convenience, we also denote Vǫ by the smooth extension of Vǫ to a
neighborhood of Ω, so Vǫ(z) → log |h(z)| almost everywhere as ǫ → 0+. Then
the smooth regularity of αM implies αǫ = 1

π∂∂̄Vǫ ∈ C∞
(1,1)(Ω̄), and αǫ is also

d-closed and positive, and αǫ → αM in the sense of currents.
Thus, applying Theorem 1.2 to each παǫ, we can find a negative function uǫ

such that






i

π
∂∂̄uǫ = αǫ,

||uǫ||L1(bΩ) + ||uǫ||L1(Ω) . ||αǫ||L1(Ω),

and for some constant C > 0, we get

(4.1)

∫

Ω

|uǫ(z)|dV (z) < C, uniformly in ǫ > 0.

The plurisubharmonicity of log |h(z)| implies that it is locally integrable. Hence,
for any compact subset K ⊂ Ω, we have

(4.2)

∫

K

|Vǫ(z)|dV (z) < CK , CK > 0 depending only on K.

We define

gǫ = uǫ − Vǫ,

it is easy to see that gǫ is a pluriharmonic function on Ω. Since Ω is a domain,
gǫ = Re[Gǫ], where Gǫ is holomorphic on Ω.

Using (4.1), (4.2) and the Montel’s Theorem for gǫ, there exists a subse-
quence {gǫn} of {gǫ} that converges to a pluriharmonic function g uniformly
on compact sets of Ω, where limn→∞ ǫn = 0. Moreover, we also have

g = lim
n→∞

gǫn = lim
n→∞

Re[Gǫn ] = Re[G]

for some holomorphic function G on Ω.
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Now, let u := log[|h|] + g = log[|h|] + Re[G] = log[|heG|], then we have










limn→∞ uǫn = u, in L1(Ω),
i
π∂∂̄u = αM in the sense of currents,

u ∈ L1(Ω), by Theorem 1.2.

On the other hand, let g(z) = heG(z), since i
π∂∂̄ log[|h|] = i

π∂∂̄ log[|g|] = αM ,
the zero set of g is the same as the zero set of h. Finally, |g| = eu, that means
g is bounded holomorphic since u is negative. Thus we complete the proof.
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