J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 11, Number 4 (November 2004), Pages 293-308

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA
ITERATION METHOD WITH ERRORS FOR STRICTLY
HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

ZEQING Liu, JEONG SHECK UME*, AND SHIN MIN KANG

ABSTRACT. Let K be a nonempty convex subset of an arbitrary Banach space
X and T : K — K be a uniformly continuous strictly hemi-contractive operator
with bounded range. We prove that certain Ishikawa iteration scheme with errors
both converges strongly to a unique fixed point of T and is almost T-stable on K.
We also establish similar convergence and almost stability results for strictly hemi-
contractive operator T : K — K, where K is a nonempty convex subset of arbitrary
uniformly smooth Banach space X. The convergence results presented in this paper
extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee
& Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19],
Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

1. INTRODUCTION

Let X be an arbitrary Banach, X* be its dual space and (z, f) be the generalized
duality pairing between z € X and f € X*. The mapping J : X — 2% defined by

J(z) = {f € X* : Re(z, f) = ||z||* = || fI*}, =€ X,

is called the normalized duality mapping. It is known that X is uniformly smooth
if and only if X* is uniformly convex. The symbols D(T), R(T) and F(T) denote
the domain, the range and the set of fixed points of an operator T, respectively.

Definition 1.1 (Chidume & Osilike [9], Weng [27]). Let X be an arbitrary normed
linear space and T : D(T) C X — X be an operator.
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(1) T is said to be strongly pseudocontractive if there exists ¢ > 1 such that for
each z,y € D(T) andr > 0

lz =yl < |1 +r)(z —y) — ri(Tz — Ty)||. (1.1)

(ii) T is said to be local strongly pseudocontractive if for each z € D(T') there exists
tz > 1 such that for all y € D(T') and r > 0

lz —yll N1 +r)(z - y) ~ rte(Tz - Ty)|. (1.2)

(iii) T is said to be strictly hemi-contractive if F(T) # @ and if there exists ¢t > 1
such that for all z € D(T), ¢ € F(T) and r > 0,

lz —qll <[[(1+7)(z—q) — rt(Tz — g}l (1.3)

Clearly, each strongly pseudocontractive operator is local strongly pseudocontrac-
tive.

Let K be a nonempty convex subset of an arbitrary normed linear space X and
T : K — K be an operator. Assume that 29 € K and z,+1 = f(T,z,) defines an
iteration scheme which produces a sequence {z,}22, C K. Suppose, furthermore,
that {z,}22, converges strongly to ¢ € F(T) # @. Let {yn}32, be any bounded
sequence in K and put €, = ||yn+1 — (T, yn)ll-

Definition 1.2. (i) The iteration scheme {z,}32, defined by znt+1 = f(T,x,) is
said to be T-stable on K if limn_;oo €n = 0 implies that lim, o yn = ¢;

(ii) The iteration scheme {z,}32, defined by zn4+1 = f(T, z») is said to be almost
T-stable on K if 372 jen < oo implies limy o0 Y = g.

It is easy to see that an iteration scheme {z,}, which is T-stable on K is
almost T-stable on K. Osilike [23] proved that an iteration scheme which is almost
T-stable on X may fail to be T-stable on X.

Let us recall the following three iteration processes due to Mann [20], Ishikawa
[16] and Xu [28], respectively.

Let K be a nonempty convex subset of an arbitrary normed linear space X and
T : K — K be an operator.

(i) For any given xp € K the sequence {z,}5, defined by
Tptl = (1 - an)xn +anTYn, Yn = (1 - bn)xn + b, Tz,, n >0,

is called the Ishikawa iteration sequence, where {a,}52, and {b,}2, are real
sequences in [0, 1] satisfying appropriate conditions.
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(ii) In particular, if b, = 0 for all n > 0, then the sequence {z,}32., defined by
20 € K, zpy1 = (1 —an)zn + anTzn, n >0,

is called the Mann iteration sequence.
(iii) For any given zo € K the sequence {z,}5> defined by

Tptl = GnZn + bnTy'n. + Cppn, Yn = a;lxn + b'InTxn + c;zvn’ n >0,

where {un}22q, {vn}22, are arbitrary bounded sequences in K and {a,}32,,
{Bn}20, {en}sgs {an}3, {8,152, and {c,}32, are real sequences in [0,1]
such that an + bp + ¢n = al, + b, + ¢}, = 1 for all n > 0, is called the Ishikawa
iteration sequence with errors.

(iv) If, with the same notations and definitions as in (iii), ¥, = ¢}, = 0 for alln > 0,
then the sequence {z,}52, now defined by

29 € K, Tny1 = anZTpn + Ty + cpun, n >0,

is called the Mann iteration sequence with errors.

It is clear that the Ishikawa and Mann iteration sequences are all special cases of
the Ishikawa and Mann iteration sequences with errors, respectively.

Chidume [3] proved that if X = L, (or I,) for p > 2, K is a nonempty bounded
closed convex subset of X and T': K — K is a Lipschitz strongly pseudocontractive
mapping, then the Mann iteration sequence converges strongly to the unique fixed
point of T'. Afterwards, several authors extended the result of Chidume in various
directions (see e.g., Chang [1}, Chang, Cho, Lee & Kang [2], Chidume [4, 5, 6,
7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu
(28], Zhou [29] and Zhou & Jia [30]). Chidume [4] obtained that the Ishikawa
iteration process can be used to approximate the fixed point of the Lipschitz strongly
pseudocontractive mapping T' : K — K, where K is a nonempty bounded closed
convex subset of a real uniformly smooth Banach space X. Xu [28] extended the
results of Chidume in Chidume (3] and Chidume [4] to both the Ishikawa iteration
method with errors and without the Lipschitz assumption. Chidume & Osilike [9]
improved the result of Chidume [3] to strictly hemi-contractive mappings and real
uniformly smooth Banach spaces. Chidume [9] generalized the results in Chidume
[3, 4] and Xu [28] to both real Banach spaces, the Ishikawa iteration method with
errors and uniformly continuous strongly pseudocontractive mappings.

A few stability results for certain classes of nonlinear mappings have been estab-
lished by several authors (see e. g., Harder [13, 14, 15], Osilike [21, 22, 23]). Rhoades
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[24] proved that the Mann and Ishikawa iteration methods may exhibit different
behaviors for different classes of nonlinear mappings. Harder & Hicks [15] revealed
that the importance of investigating the stability of various iteration procedures for
various classes of nonlinear mappings. Harder [13] established applications of stabil-
ity results to first order differential equations. Osilike [21, 22] obtained that certain
Mann and Ishikawa iteration methods are T-stable on X when T is a Lipschitz
strongly pseudocontractive operators in real g-uniformly smooth Banach spaces or
real Banach spaces, respectively.

Let K be a nonempty closed convex subset of an arbitrary Banach space X
and T : K — K be a uniformly continuous strictly hemi-contractive operator with
bounded range. In this paper, we prove that certain Ishikawa iteration scheme
with errors both converges strongly to a unique fixed point of T and is almost T-
stable on K. Furthermore, we also establish similar convergence and almost stability
results for strictly hemi-contractive operator T : K — K, where K is a nonempty
convex subset of arbitrary uniformly smooth Banach space X. The convergence
results presented in this paper extend, improve and unify the corresponding results
in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume &
Osilike [9, 10, 11, 12), Liu [19], Schu {25], Tan & Xu [26], Xu [28], Zhou [29], Zhou
& Jia [30] and others.

2. PRELIMINARIES

We need the following Lemmas which play crucial roles in the proofs of our results.

Lemma 2.1 (Kato [17]). Let X be an arbitrary Banach space and z,y € X. Then
llzll < ||z+7y|| for every r > 0 if and only if there is j € J(x) such that Re(y, j) > 0.

Lemma 2.2 (Liu [18]). Suppose that {an}32g, {Bn}o0, {7320 and {wn}pl, are

nonnegative sequences such that
ant+1 £ (1 —wp)on + Bpwn +1m;, 1 20,
with {wn}o C [0,1], 02 qwn = 00, liMn o Bn = 0 and 377 g va < 00. Then

limy, 00 o = 0.

Lemma 2.3 (Chidume & Osilike [9]). Let X be a Banach space and T : D(T) C
X — Xbe an operator with F(T) # @. Then T is strictly hemi-contractive if and
only if there exists t > 1 such that for each x € D(T) and q € F(T), there exists
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j € J(z — q) satisfying
1
Refe - 72,02 (1- 7 ) e . (21)

Lemma 2.4. Let X be an arbitrary normed linear space and T : D(T) C X — X

be an operator.

(i) If T is a local strongly pseudocontractive operator and F(T) # @, then F(T)
s a singleton and T is strictly hemi-contractive;
(i) If T is strictly hemi-contractive, then F(T) is a singleton.

Proof. Suppose that F(T) # @ and T is a local strongly pseudocontractive operator.
We assert first of all that F/(T') is a singleton. Otherwise there exist distinct elements
p,q € F(T). Since T is local strongly pseudocontractive, then there exists t, > 1
such that for all y € D(T') and r > 0,

2 -yl <11 +7)(p—y) = rtp(Tp — Ty)|. (2.2)
Set y=qe F(T)C D(T) and r = til—_lj. It follows from (2.2) that

1
O<llp—gll=11+r( =)l lp—dll = 5lp—dll,

which is a contradiction. Hence F(T') = {q} for some ¢ € D(T).
Next we show that T is strictly hemi-contractive. Note that T is a local strongly
pseudocontractive operator and F(T') = {q}. Put ¢t = t;. Then (1.2) ensures that

lg =yl <1 +r)(qg—y) - rt(g — Ty)||

for all y € D(T') and r > 0. That is, T is strictly hemi-contractive.
The proof of (ii) now follows exactly as in the first part of the proof of (i). This
completes the proof. a

Lemma 2.5 (Chang, Cho, Lee & Kang [2]). Let X be a Banach space. Then X
s a uniformly smooth if and only if J is single valued and uniformly continuous on
any bounded subset of X .

In the sequel, we shall denote the single valued normalized duality mapping by j.

Lemma 2.6 (Xu [28]). Let X be a uniformly smooth Banach space and let J : X —
2X" be the normalized duality mapping. Then

= +yll? < [le]® + 2Re(y, j(z + 1)), @,y€X.
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3. MAIN RESULTS

In this section, I denotes the identity mapping on X, d, = b,+¢, and d;, = b, +cl,

foralln > 0 and k = % € (0,1), where ¢ is the constant appearing in (1,3) or

(2.1). Our main results are as follows.

Theorem 3.1. Let K be a nonempty convex subset of an arbitrary Banach space
X and let T : K = K be a uniformly continuous and strictly hemi-contractive oper-
ator wiht R(T) bounded. Suppose that {un}S2, and {vn}52, are arbitrary bounded
sequences in K and {an}o, (b }0 {en}20r {000 {64}, {ch} and

{rn}S2, are any sequences in [0,1] satisfying

an+by,+en=a, +b,+c,=1, n>0 (3.1)
en =Tpbn, n2>0; (3.2)
lim b, = lim r, = lim ¥, = lim ¢, =0; (3.3)
n-—00 n—oo n—o0 n—oo
[e ]
> by = oo. (3.4)
n=0

Suppose that {x,}52, is the sequence generated from an arbitrary xo € K by
Zn = ah T + 0, TTh + Chvn, Tl = an@n + bnT2n + cptin, n >0. (3.5)
Let {yn}32, be any bounded sequence in K and define {en}72q by
Wn = apYn + 5, TYn + CUn, €n = |Unt1 —pull, 720, (3.6)

where Pr, = anYn + bnTwn + crun. Then there ezist nonnegative sequences {sp}22
and {t,}52, such that

(i) the sequence {zn}52, converges strongly to the unique fized point q of T and
Nznt1 — gl < (1 - kbn)”mn —q| + k—lbnsn + k—lcn”un —4qll, n>0;

(ii) llyns1 — all < (1= kba)llgn — gll + k7 bptn + k™ enllun — gll +€n, n > 0;

(iii) Do y€n < 00 implies that limp 00 Yn = g, s0 that {zn};2 ¢ is almost T-stable
on K;

(iv) limpeo Yn = q tmplies that lim, y0 €n = 0.

(v) limpyo0 Sp = limp 00 tn = 0.
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Proof. Lemma 2.4 ensures that F(T) is a singleton. That is, F(T) = {q} for some

g€ K. Let sp = ||Tzny1 — Tz, tn = ||TPn — Twy| for alln > 0 and

M =1+ |lzo — gll +sup{|[Tz — q|| : z € K}

+ sup{max{|lun — g, llvn — gl|, llyn — gl : n 2 O}}.

It is easy to verify that
max{[|zn — ql|, |22 — gll, lwn — gll, P — qll} < M, n20.
Note that

|Zn+1 = 2nll < ballzn — Tznll + callzn = unll + Ballzn — Taall + cullzn — vnl

(3.7)

<2M(d, +d;) =0

and

llpn — wy| < bn”yn — Twy|| + callyn — unl| + b;z”yn = Tynll + Chllyn — vn|

< 2M(dn +d,) = 0

as n — o0o. Since T is uniform continuity, it follows that
lim s, = lim ¢, =0.
n—00 n—00
Since T is strictly hemi-contractive, it follows from Lemma 2.3 that
Re(z ~ Tz, j(z ~ q)) 2 ke ~q|’, zeK,
which implies that
Re(I-T—kl)z—-(I-T-kI)g,j{x—q)) >0, z€K.

In view of Lemma 2.1, we have

le=gl|l<lz—g+r(I-T-kl)z—(I~-T—kI)g)|, z€ K, r>0.

It follows from (3.1) and (3.5) that for all n > 0,
(1 —dp)xpn = Tpt1 — bnTzp — Crun
+ bn(T:I)n+1 - Tzn) — CplUn,

and
(1—dn)g=(1~-(1=k)bn)g+ba((1 —k)I ~T)q—cug.

(3.8)

(3.9)

(3.10)

(3.11)
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By virtue of (3.9)—(3.11), we infer that for any n > 0,
br,
(I —dn)llzn — gl 2 (1~ (1 = k)by)l|Tns1 — g + m[«l ~ k) = T)zpia
— (L= B) = T)g]ll = balTznt1 ~ Tznl| — callun - g
2 (1~ (1= k)bu)llzn+r = gll = bal|Txn1 ~ Tzal| — cplfun — all,

which implies that for all n > 0,

] — gl < ———2 - S L A— -
Zn+1 —qff < 1— (1 - k)b lzn — qll + 1— (1 k)bn ITZnt1 — T2l

C

n
AT Lkl
kb, + ¢, 1 .
< A - —_—
< (= T, lom = all 4 7 bnsn + K enlfun —
< (1 - kbn)”.'l:n - q” + k—lbnsn + k_lcn”un - QH (3.12)

Put o = |[zn — q||, wn = kb, Bn = k7 2(sn +7nlltn — qf]) and +, = 0 for each n > 0.
Using (3.2) and (3.12), we have

Qni1 £ (1 - Wn)an + wnfn + Yo, n2>0.

Observe that Y} 22 jwn = 00, wn € (0,1}, > ¥ = 0 and lim,0 B = 0. It
follows from Lemma 2.2 that lim,,0 an = 0. That is, z, — q as n — oo.
From (3.1) and (3.6), we get for all n > 0,

(1 - dn)yn =DPn— bpyTwy, — cpun
= (1= (L= K)ba)pn + ba((1— k) - T)pn
+ bn(Tpp — Twy) — cruy. (3.13)
It follows from (3.9), (3.11) and (3.13) that
(1= dn)llyn — gll 2 (1 = (1 = K)bn)llpn — ¢
bn
(- k) - T)p, — (1 — k) —
(= B = T — (1= B - T
= bnl|Tpn — Twa|| — callun - 4|
2 (1= (1= k)bn)llpn — all — butn — callun — gl (3.14)
for all n > 0. Using (3.1) and (3.14), we immediately conclude that

+

—gll g ———% . — — et
Cn

+
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< (1 —kbn)llyn —all + k_lbntn + k—lcn”un — 4| (3.15)
for any » > 0. Thus (3.15) implies that

lvnt1 — all < lpn = qll + [|Yn+1 — Pall
< (1= kbp)||yn — gl + kK bptn + k7 enllun — gl + €n (3.16)

for all n > 0.
Suppose that > 22 jen < 00. Set an = ||yn — q||, wn = kbp, Y0 = €n,

Bn = k_z(tn +7'n||un - QH), n > 0.

Using Lemma 2.2, (3.3), (3.4) and (3.16), we conclude that o, = 0 as n — oo.
Therefore y, — g as n — oo. That is, {2,}32 is almost T-stable on K.
Suppose that lim, 00 ¥ = ¢. It follows from (3.15) that

€n < ”yn+1 - QH + ”pn - QH
< |ynt1 — gll + (1 = kb)|yn — gl + 720 + k™ en]jun — qf)

— 0

as n — oo. That is, €, — 0 as n — oo. This completes the proof. a
Using the technique of proof of Theorem 3.1, we have

Theorem 3.2. Let X, T, K, {un}32g, {vn}ozo, {Zn}ozo, {2n}ozer {wn}os
{Un}So, {Pn}y and {en}2 ) be as in Theorem 8.1. Suppose that {an}osq, {bn}oo,
{en}20, {03320, {7,152 and {c,}3%, are any sequences in [0,1] satisfying (3.1),
(3.4) and

lim b, = lim ¢, = lim b}, = lim ¢, = 0; (3.17)

n—o0 n—o0 n—00 n—o0

o
Z Cp = 00. (3.18)
=0
Then the conclusions of Theorem 8.1 hold.

Theorem 3.3. Let K be a nonempty convex subset of a uniformly smooth Banach
space X and T : K — K be a strictly hemi-contractive operator with R(T) bounded.
Suppose that {un}no, {vn}nlo, {Zn}nlo, {2n}elo, {wnlnlo, {¥ntnio, {Pr}azos
{enlnzo {antnlos {bn}nzos {cn}ilo, {antnzos {bh}nlo, {chlnio and {rn}7i, be
as in Theorem 8.1. Then there exist nonnegative sequences {sp}3, {tn}S2, and
constant D > 0 such that
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(i) the sequence {zn}52, converges strongly to the unique fized point q¢ of T and
I€ns1 — qll* < (1 = kbn)lzn — qll* + Dbnsn, n >0,

(ii) [lgn+1 = gqll* < (1 ~ kby)llyn — ql|” + Dbntn + Den, n 20,
(iii) S°2° g&n < 00 implies that limp o0 Yn = g, S0 that {Z,}32 is almost T'-stable
on K;

(iv) limp—o0 Yn = ¢ tmplies that limp 0 €p = 0.

(v) limpso0 Sn = limp 00t = 0.
Proof. Let ¢ and M be as in the proof of Theorem 3.1. Then (3.7) holds. Put
fn = iz ~a)=3(zn =), 9n = li(@n+1—-0) —§ (2a=DI|, hn = [l§ (Pn—a)~j(wn—a)|l,
kn = ||7(wn — q) — 3(yn — q)|| for each n > 0. Observe that

l(2n = @) ~ (@n — Q| < yllwn — Tzall + cpllzn — vnll < 2Mdy, (3.19)

(Znt1 — @) — (20 — Ol < bnllzn — T2l + CnllTn — unl|
+ bpllzn — Tzall + cpllza — vnl|
< 2M(d, +d), (3.20)

|(pn = @) = (wn — @)l < ballyn — Twn |l + cnllyn — unll
+ bullyn — Tynll + cpllyn — val)

< 2M(dy +d.), (3.21)
l(wn — @) = (4 — DIl < Bpllyn — Tynll + cpllyn — vnll < 2Md, (3.22)

for any n > 0. Using Lemma 2.5, (3.2), (3.3) and (3.19)—(3.22), we infer that
A0 f = g9 = g e = g e =0 (3:23)

In view of (3.1), (3.5), (3.7) and Lemma 2.3 and Lemma 2.6, we have
2 = qll® = [|(1 — dp)(@n — @) + B (Tzn — @) + c(vn ~ @)|I?

< (1 - d,)||zn — gl|* + 2b, Re(Tzn — g, §(20 — q))
+ 2cp, Re{vn — g, (20 — @))

< (1 = dp)?llen = glf? + 26, Re(Tzn — ¢, §(zn — 9))

+ 2b, Re(Txn — ¢, §(zn — @) ~ §(n — @)
+ 2¢p[|vn ~ gllllzn — qll
<[ = dp)? + 20,(1 = K)]llzn — gl

+ 26, || Tz — gl|]li (20 — g) — 3(2n — @)} + 2M3cy
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< (1= dp)? + 26, (1 = K)]l|zn — gl + 2MY, fr + 2M%c,  (3.24)

for any n > 0. Using (3.1), (3.5), (3.7), (3.24) and Lemma 2.3 and Lemma 2.6, we
conclude that

lzn+1 = qli* = 11 — dn)(@n ~ @) + b0 (T2n — @) + ca(un — @)
< (1= dn)||zn - qlI* + 260 Re(T2 — g, §(Tns1 — q))
+2cn Re(un — ¢, j(Tn+1 — q))
< (1= dn)*llzn — glI* + 260 Re(T2n — g, (20 — q))
+ 2b, Re(T2n — q, §(Tns1 — q) — §(2n — q)) + 2M 3¢,
< (1= dn)l|zn — qlf* + 2(1 = K)bnl2n ~ qll®
+ 2Mbngn + 2Mcy,
< {(1 = dn)? +2(1 = K)bal(1 — d})? + 26, (1 — K)]}H2n — g
+2(1 — k)bo (2MVY], fr, + 2M3cl) + 2M b, gy, + 2M3c,,
< (1 — kbn)|lzn — gl + Dbys., (3.25)
for any n > 0, where sp = b fn + ¢, + gn + Tny D = 6M2. Let an = ||lzn — g%,
wn = kby, Bn = k" 'Ds, and v, = 0 for each n > 0. Thus Lemma 2.2, (3.2)-(3.4),
(3.23) and (3.25) yield that an — 0 as n — oo. That is, im0 Tn = ¢. Similarly,

we have
lwn = gll* = (1 = dn)(¥n — @) + by (T — @) + ¢y (v — @)
< (1-dp)*lyn — gll* + 26, Re(Tyn — q, j(wn — q))
+ 2¢, Re(vn — g, j(wn —q))
< (1-dp)?|lyn — gll* + 2b), Re(Tyn — g, j(¥n — q))
+ 2bn, Re(Tyn — ¢, j(wn — q) — j(yn — q))
+ 2¢,[[vn = gl lwa — 4|l
< [(1 —dp)? + 280,(1 = K)]llyn — qll®
+ 26, [ Tyn — alllli(wn — @) ~ 5(yn — )|l + 2M2c,,
<M1 =dp)® +2bn(1 = K)lllyn — qll® + 2Mboh +2M%, (3.26)
for all n > 0. Using (3.1), (3.5), (3.7), (3.26) and Lemma 2.3 and Lemma 2.6, we
infer that

llpr — ‘I“2 = [|(1 = du)(yn — @) + ba(Twn — q) + cn(un — Q)Hz
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< (1= dn)?lyn — gl + 2bn Re(Twn, — g, j(pn — q))
+ 2cn Re(un — ¢, j(Pn — q))

< (1= dn)?llyn — qll* + 26 Re(Twy — q, j(wn — q))

+ 2b, Re(Twn — q, §(pn — @) — j(wn — @)) + 2M?cy,
< (1= dn)?llyn — gl +2(1 = k)bnllwn — g?

+ 2Mbyk, + 2M2c,

< {(1 = dn)® + 2(1 = k)bo[(1 — dr,)® + 26, (1 — k)] Hlym — qlf?

+2(1 = k)b (2MbLhy + 2M3CL) + 2Mbyky, + 2M2c,
< (1= kbn)llyn — qll* + Dbty (3.27)

for any n > 0, where t, = b, hy, + ¢, + kn + 75, It follows from (3.7), (3.27) that

Iyn+1 — all® < (lyns1 — pall + llpn — qll)?

< llpn — all* + lgn+1 — Prll(lyns1 — pall + 2(pn — gfl)

< (1= kbp)||yn — qll> + Dbntn + £n(2M + 2M)

< (1 = kby)|lyn — g + Dbntn + Dey (3.28)
foralln > 0.

Suppose that Y o0 jen < 00. Let an = |lyn — qll?, wn = kbn, Bn = k1 Dt,, and

Y = De,, for each n > 0. Thus Lemma 2.2, (3.2)-(3.4), (3.23) and (3.28) yield that
a, — 0 as n — oo. That is, limy—oo Yn = ¢.

Conversely, suppose that lim,_s, yn = q. By virtue of (3.27) and (3.4), we obtain
that

en < [|Yn+1 — gl + lpn — 4|l
1
< ”yn+1 - QH + [(1 - kbn)”yn - Q||2 + Dbntn]2

—0

as n — oo. This implies that lim,,—., €, = 0. This completes the proof. O
Similarly, we have

Theorem 3.4. Let X, T, K, {un}?2, {vn}320, {Zn}0, {2n}320, {wn}olo,
{yn}0, {Pn}0s {En} be as in Theorem 3.3. Suppose that, {an}s>q, {bn}alo,
{en}0, {ah Y2, (VL322 and {c,}32, are any sequences in [0, 1] satisfying (3.1),
(3.4), (3.17) and (3.18). Then the conclusion of theorem 8.3 hold.
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Remark 3.1. The convergence results in Theorem 3.1 and Theorem 3.2 extend, im-

prove and unify Theorems 3.4 and 4.2 of Chang [1], Theorems 3.4 and 4.2 of Chang,

Cho,

Lee & Kang [2], Theorem of Chidume (3], Theorem 2 of Chidume [4], Theorem

4 of Chidume [5], Theorem 4 of Chidume [6], Theorem 1 of Chidume [7], Theorem
2 of Chidume & Osilike [9], Theorem 4 of Chidume & Osilike [10], Theorem 1 of
Chidume & Osilike [11], Theorem 1 of Chidume & Osilike [12], Theorem 1 of Liu
[19], the Theorem of Schu [25] and Theorem 4.2 of Tan & Xu [26] in the following

ways:

(1)

(iii)

(iv)

Theorem 3.1 and Theorem 3.2 hold in arbitrary Banach spaces whereas the
results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7],
Chidume & Osilike [9, 10, 11, 12], Schu [25] and Tan & Xu [26] are fulfilled
in the restricted L, (or l,) spaces, p-uniformly smooth Banach spaces, real
uniformly smooth Banach spaces, real smooth Banach spaces, real Banach
spaces, respectively;

The boundedness of R(T') in Theorem 3.1 and Theorem 3.2 is weaker than
the boundedness of the subsets K in Chang [1}, Chang, Cho, Lee & Kang [2],
Chidume [3, 4, 5, 6, 7], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25]
and Tan & Xu [26];

The Mann iteration methods in Chang [1], Chang, Cho, Lee & Kang [2],
Chidume [3], Chidume & Osilike [10], Liu [19], and Schu [25] and the Ishikawa
iteration methods in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [4, 5, 6],
Chidume & Osilike [9, 11, 12], and Tan & Xu [26] are replaced by the more
general Ishikawa iteration method with errors;

The uniformly continuous strongly pseudocontractive operators in Chang [1],
Chang, Cho, Lee & Kang [2], Chidume {6, 7], Chidume & Osilike [12] and Schu
[25], the Lipschitz strongly pseudocontractive operators in Chidume [3, 4, 5],
Chidume & Osilike [10, 11}, Liu {19}, and Tan & Xu [26] and the Lipschitz
strictly hemi-contractive operators in Chidume & Osilike [9] are replaced by
the uniformly continuous strictly hemi-contractive operators;

The iteration parameters oy, 8, in Chidume [4] and Chidume & Osilike [9]
deal with the geometry of the underlying Banach space X. The iteration para-
meters {an}nZo, {bn}aZo, {enlnzor {an}ao; {tn}nto, {ch}alo and {rn}32, in
Theorem 3.1 and Theorem 3.2 are not dependent on the geometric structure
of X;
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(vi) The conditions 0 < an < B, < 1 in Chidume [4] and Chidume [6] are omit-
ted. The following example reveals that Theorem 3.1 generalizes indeed the
corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume
[3, 4, 5, 6, 7], Chidume & Osilike [9, 10, 11, 12}, Liu [19], Schu [25] and Tan &
Xu [26].

Ezample 3.1. Let R denote the reals with the usual norm, K = [0,00) and define
T:K—>KbyTz= (sin%)2 for all z € X. Set

P SRS N S SR Y
22T 9 Txn 204n) YT 2y/1+n
2
= —, ’:1—-_ I=I=
e 2(1+n) n 2+n’b" n

for all n > 0. It is easy to verify that

24+n

- 2
5 Y| < =lt—y|, =z,yeK. (3.29)

That is, T is both Lipschitz and uniformly continupus in K. Thus (3.29) yields that
|(1+7r)(z —y) — rt(Tz — Ty)| > (1+7)|z — y| — rt|Tz — Ty
= |z —y|+r(jz - y| — Tz - Tyl)

Tz —Ty| < 2|sinZ —sinZ| < 4[sin &
y 3 3

> |z -~y

for any z,y € K and r > 0. Hence T is strongly pseudocontractive. Clearly
F(T) = {0}. Thus Lemma 2.4 ensures that T is strictly hemi-contractive. Since
K is unbounded and } ;- ;cn = 00, the results in Chang [1], Chang, Cho, Lee &
Kang [2], Chidume [3, 4, 5, 6, 7], Chidume & Osilike [9, 10, 11, 12], Liu [19}, Schu
[25] and Tan & Xu [26] are not applicable. Let
1
Tp = A

for each n > 0. Then the conditions of Theorem 3.1 are satisfied.

Remark 3.2. Theorem 3.3 and Theorem 3.4 generalize Theorems 3.2 and 4.1 of
Chang [1], Theorems 3.3 and 4.1 of Chang, Cho, Lee & Kang [2], Theorem of
Chidume [3], Theorem of Chidume [8], Theorem 2 of Chidume & Osilike [9], Theorem
4 of Chidume & Osilike [10], Theorem 4.2 of Tan & Xu [26], Theorem 3.3 of Xu [28],
Theorem 2 of Zhou [29] and Theorem 2.1 of Zhou & Jia [30] to the more general
class of uniformly smooth Banach spaces and the Ishikawa iteration method with

€rrors.
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