• Title/Summary/Keyword: bounded linear operator

Search Result 110, Processing Time 0.02 seconds

ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES

  • Tran, Xuan Quy;Dang, Hung Thang;Nguyen, Thinh
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.347-362
    • /
    • 2016
  • In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.

DIVISIBLE SUBSPACES OF LINEAR OPERATORS ON BANACH SPACES

  • Hyuk Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In this paper, we investigate the properties related to algebraic spectral subspaces and divisible subspaces of linear operators on a Banach space. In addition, using the concept of topological divisior of zero of a Banach algebra, we prove that the only closed divisible subspace of a bounded linear operator on a Banach space is trivial. We also give an example of a bounded linear operator on a Banach space with non-trivial divisible subspaces.

CONVERGENCE OF EXPONENTIALLY BOUNDED C-SEMIGROUPS

  • Lee, Young S.
    • Korean Journal of Mathematics
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • In this paper, we establish the conditions that a mild C-existence family yields a solution to the abstract Cauchy problem. And we show the relation between mild C-existence family and C-regularized semigroup if the family of linear operators is exponentially bounded and C is a bounded injective linear operator.

  • PDF

A NOTE ON CERTAIN QUOTIENT SPACES OF BOUNDED LINEAR OPERATORS

  • Cho, Chong-Man;Ju, Seong-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.715-720
    • /
    • 2004
  • Suppose X is a closed subspace of Z = ${({{\Sigma}^{\infty}}_{n=1}Z_{n})}_{p}$ (1 < p < ${\infty}$, dim $Z_{n}$ < ${\infty}$). We investigate an isometrically isomorphic embedding of L(X)/K(X) into L(X, Z)/K(X, Z), where L(X, Z) (resp. L(X)) is the space of the bounded linear operators from X to Z (resp. from X to X) and K(X, Z) (resp. K(X)) is the space of the compact linear operators from X to Z (resp. from X to X).

THE DRAZIN INVERSE OF THE SUM OF TWO PRODUCTS

  • Chrifi, Safae Alaoui;Tajmouati, Abdelaziz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.705-718
    • /
    • 2022
  • In this paper, for bounded linear operators A, B, C satisfying [AB, B] = [BC, B] = [AB, BC] = 0 we study the Drazin invertibility of the sum of products formed by the three operators A, B and C. In particular, we give an explicit representation of the anti-commutator {A, B} = AB + BA. Also we give some conditions for which the sum A + C is Drazin invertible.

BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS

  • FERRANDO, JUAN CARLOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1579-1586
    • /
    • 2015
  • In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.

GENERALIZED INTERTWINING LINEAR OPERATORS WITH ISOMETRIES

  • Hyuk Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • In this paper, we show that for an isometry on a Banach space the analytic spectral subspace coincides with the algebraic spectral subspace. Using this result, we have the following result. Let T be a bounded linear operator with property (δ) on a Banach space X. And let S be an isometry on a Banach space Y . Then every generalized intertwining linear operator θ : X → Y for (S, T) is continuous if and only if the pair (S, T) has no critical eigenvalue.