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THE MINIMUM MODULUS OF A LINEAR MAP IN
OPERATOR SPACES

Seung-Hyeok Kye

Abstract. For a completely bounded linear maps between operator sp-
aces, we introduce numbers which measure the degree of injectivity and
surjectivity. The number measuring the injectivity is an operator space

analogue of the minimum modulus of a linear map in normed spaces.

1. Introduction

Subspaces and quotient spaces are key notions in Banach space theory. These
notions can be expressed with isometries and quotient maps, which are special
cases of injective and surjective linear maps, respectively. To be precise, we
consider the following two numbers for a bounded linear map φ : X → Y
between Banach spaces X and Y :

(1)
γ(φ) = inf{∥φ(x)∥ : ∥x∥ = 1, x ∈ X},
δ(φ) = sup{s ≥ 0 : φ(X1) ⊃ Ys},

respectively, where Xr = {x ∈ X : ∥x∥ < r} for a positive number r > 0.
Note that φ is surjective if and only if δ(φ) > 0 by the open mapping

theorem. If this is the case, then it is easy to see that the inequality

γ(φ) ≤ δ(φ)

holds. Although γ(φ) > 0 implies the injectivity of φ, the converse does not
hold in general. To see this, consider the set-theoretical inclusion map from
ℓ1(N) into ℓ∞(N). If φ is injective, then the inequality

δ(φ) ≤ γ(φ)

also holds. If φ is a contraction, then it is easy to see that φ is an isometry if
and only if γ(φ) = 1, and φ is a quotient map if and only if δ(φ) = 1. Therefore,
the numbers γ(φ) and δ(φ) measure the degree of injectivity and surjectivity
of a linear map φ, respectively.
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It is also easy to prove the identity

(2) γ(φ∗) = δ(φ) (respectively δ(φ∗) = γ(φ))

whenever φ is surjective (respectively injective) by using the bipolar theorem
and Hahn-Banach extension theorem for Banach spaces. These equalities reflect
the fact that φ is an isometry (respectively a quotient map) if and only of φ∗

is a quotient map (respectively an isometry). The number γ(φ) is called the
minimum modulus of φ, and was introduced in [5] for the study of spectral
theory of linear operators. A variation of this number

inf{∥φ(x)∥ : dist(x, kerφ) = 1, x ∈ X}

was also introduced and studied in [6], [8], [1], [7].
After Ruan’s thesis [11], the notion of operator spaces has been considered

as a noncommutative quantum analogue of Banach spaces, and various aspects
of operator spaces were studied extensively. We refer recent monographs [2],
[3], [10] for whole theory of operator spaces. One of the main topics in operator
spaces is the notions of extension and lifting in various situations, as was in
Banach space theory. These questions may be expressed in terms of tensor
products as was explained in [9], where the numbers proj(V,W ⊆ Y ) and
ex(V,W ⊆ Y ) were introduced to measure the possibilities of extension and
lifting. These numbers are defined with the minimum modulus of suitable linear
maps with respect to the tensor products. The purposes of this note are to
define operator space analogues of the minimum modulus γop(φ) together with
the number δop(φ) for a completely bounded linear map φ between operator
spaces, and prove the operator space version of the identities in (2).

The author is grateful to Professor Woo Young Lee for bringing his attention
to references [6], [8] for minimum modulus in Banach spaces.

2. Preliminaries

Every non-degenerate pairing ⟨ , ⟩ of vector spaces X and Y determines
the matrix pairing

⟨ , ⟩ : Mn(X) × Mm(Y ) → Mmn(C), m, n = 1, 2, . . .

by
⟨[xij ], [ykℓ]⟩ = [⟨xij , ykℓ⟩]

which is an mn × mn scalar matrix for [xij ] ∈ Mn(X) and [ykℓ] ∈ Mm(Y ).
More precisely, if

(3)

x =
n∑

i,j=1

xij ⊗ eij ∈ X ⊗ Mn = Mn(X),

y =
m∑

k,ℓ=1

ykℓ ⊗ ekℓ ∈ Y ⊗ Mm = Mm(Y ),
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then ⟨x, y⟩ is defined by

⟨x, y⟩ =
n∑

i,j=1

m∑
k,ℓ=1

⟨xij , ykℓ⟩eij ⊗ ekℓ ∈ Mn ⊗ Mm,

where {eij} and {ekℓ} are usual matrix units for Mn and Mm, respectively.
Given a graded set D = {Dn ⊂ Mn(X) : n ∈ N} of X, the absolute polar

D} is defined by the graded set {D}
m ⊂ Mm(Y ) : m ∈ N} of Y , where D}

m is
given by

D}
m = {[ykℓ] ∈ Mm(Y ) : ∥⟨[xij ], [ykℓ]⟩∥ ≤ 1 for each [xij ] ∈ Dn, n ∈ N}

for each m = 1, 2, . . .. We say that a graded set

D = {Dn ⊂ Mn(X) : n ∈ N}

is absolutely matrix convex if

(i) Dm ⊕ Dn ⊂ Dm+n

(ii) aDmb ⊂ Dn for each a ∈ Mn,m and b ∈ Mm,n with ∥a∥ ≤ 1 and
∥b∥ ≤ 1.

If X is an operator space, then the graded set {Mn(X)1 : n ∈ N} of unit balls
is a typical example of an absolute matrix convex set. It is also easy to see that
if φ : X → Y is a linear map between operator spaces, then

{φn(Mn(X)1) ⊂ Mn(Y ) : n ∈ N}

is an absolutely matrix convex set, where φn : Mn(X) → Mn(Y ) is defined by
φn([xij ]) = [φ(xij)]. The absolute bipolar theorem [4], Proposition 4.1, says
that if D is absolutely matrix convex set, then every set of D}} is the weak
closure of the corresponding set of D, whenever X and Y are locally convex
spaces with a non-degenerated pairing.

If D is an absolutely convex set, then the definition of D} may be simplified
by

(4) D}
m = {[ykℓ] ∈ Mm(Y ) : ∥⟨[xij ], [ykℓ]⟩∥ ≤ 1 for each [xij ] ∈ Dm}.

This is already implicit in [4], Lemma 5.2, in terms of “gauges”. We provide a
simple proof with a similar argument as in there.

Let x ∈ Mn(X) and y ∈ Mm(Y ) be given as in (3). If a = [asi] ∈ Mm,n(C)
and b = [bjt] ∈ Mn,m(C), then it is straightforward to see the following:

(5) aeijb =
m∑

s,t=1

asibjtest ∈ Mm(C), i, j = 1, 2, . . . , n.
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Since axb =
∑m

s,t=1(
∑m

i,j=1 asixijbjt) ⊗ est ∈ Mm(X), we have

(6)

⟨axb, y⟩ =
m∑

s,t=1

m∑
k,ℓ=1

〈
n∑

i,j=1

asixijbjt, ykℓ

〉
est ⊗ ekℓ

=
n∑

i,j=1

m∑
k,ℓ=1

⟨xij , ykℓ⟩(aeijb) ⊗ ekℓ ∈ Mm ⊗ Mm

by (5). In order to prove (4), we assume that y ∈ Mm(Y ) satisfies

∥⟨x, y⟩∥ ≤ 1 for each x ∈ Dm,

and show the following:

(7) ∥⟨x, y⟩∥ ≤ 1 for each x ∈ Dn and n = 1, 2, . . . .

If n ≤ m, then there is nothing to prove, since Dn ⊂ Dm. Assume that n > m.
If ξ and η are unit vectors in Cmn = Cn ⊗ Cm, then by [4], Lemma 5.1, there
are isometries a and b from Cm into Cn and unit vectors ξ and η in Cm ⊗ Cm

such that
ξ = (a ⊗ id)(ξ), η = (b ⊗ id)(η).

Therefore, we have

⟨⟨x, y⟩ξ, η⟩ =
n∑

i,j=1

m∑
k,ℓ=1

⟨xij , ykℓ⟩⟨(eij ⊗ ekℓ)(a ⊗ id)(ξ), (b ⊗ id)(η)⟩

=
n∑

i,j=1

m∑
k,ℓ=1

⟨xij , ykℓ⟩⟨[(b∗eija) ⊗ ekℓ]ξ, η⟩

= ⟨⟨b∗xa, y⟩ξ, η⟩

by (6), and the relation (7) follows since b∗xa ∈ Dm by the absolute convexity
of D.

We need one more fact which is a simple application of the open mapping
theorem: If φ : X → Y is a surjective bounded linear map, then we have

(8) Ys ⊂ φ(X1) =⇒ Ys ⊂ φ(X1).

First, we show that r < s =⇒ φ(Xr) ⊂ φ(Xs). Assume that r < s. For φ(x) ∈
φ(Xr), take an open ball N of x with radius s − r. Then φ(N) ∩ φ(Xr) ̸= ∅
since φ(N) is an open set. Take x1 ∈ N and x2 ∈ Xr such that φ(x1) = φ(x2).
Then we have φ(x) = φ(x − x1 + x2) and

∥x − x1 + x2∥ ≤ ∥x − x1∥ + ∥x2∥ < (s − r) + r = s,

and so φ(x) ∈ φ(Xs). Now, if Ys ⊂ φ(X1), then Yas ⊂ φ(Xa) ⊂ φ(X1) for any
a ∈ (0, 1). Therefore, we have Ys ⊂ φ(X1), and this proves (8).

Finally, we note that

(9) s ≤ δ(φ) ⇐⇒ φ(X1) ⊃ Ys
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for a positive number s > 0. On the other hand, we also have

(10)

s ≤ γ(φ) ⇐⇒ ∥x∥ = 1 implies ∥φ(x)∥ ≥ s

⇐⇒ ∥φ(x)∥ < s implies ∥x∥ < 1

⇐⇒ ∥φ(x)∥ ≤ s implies ∥x∥ ≤ 1.

3. Main result

Note that the following theorem with n = 1 gives the identities in (2),
because every Banach space may be endowed with an operator space structure.
We also note that if φn is bounded, then the map (φ∗)n : Mn(Y ∗) → Mn(X∗)
is also bounded.

Theorem 3.1. Let φ : X → Y be a bounded linear map between operator
spaces X and Y , with the dual map φ∗ : Y ∗ → X∗ between the operator duals
Y ∗ and X∗. Fix a natural number n = 1, 2, . . . and assume that the map φn is
bounded. Then we have the following:

(i) We have δ(φn) ≤ γ((φ∗)n): The equality δ(φn) = γ((φ∗)n) holds when-
ever φ is surjective.

(ii) We have γ(φn) ≥ δ((φ∗)n): The equality γ(φn) = δ((φ∗)n) holds when-
ever φ is injective.

Proof. For the first inequality, it suffices to show that s ≤ δ(φn) implies s ≤
γ((φ∗)n), or equivalently, the inclusion φn(Mn(X)1) ⊃ Mn(Y )s implies the
following relation

∥[gij ]∥Mn(Y ∗) = 1 =⇒ ∥(φ∗)n([gij ])∥Mn(X∗) ≥ s

by (9) and (10). Assume φn(Mn(X)1) ⊃ Mn(Y )s and ∥[gij ]∥Mn(Y ∗) = 1. Then
we have

∥(φ∗)n([gij ])∥Mn(X∗) = sup{∥⟨[xkℓ], [φ∗(gij)]⟩∥ : [xkℓ] ∈ Mn(X)1}
= sup{∥⟨[φ(xkℓ)], [gij ]⟩∥ : [xkℓ] ∈ Mn(X)1}
≥ sup{∥⟨[ykℓ], [gij ]⟩∥ : [ykℓ] ∈ Mn(Y )s}
= s · sup{∥⟨[ykℓ], [gij ]⟩∥ : [ykℓ] ∈ Mn(Y )1}
= s · ∥[gij ]∥Mn(Y ∗) = s,

and this proves δ(φn) ≤ γ((φ∗)n).
Now, we assume that φ is surjective and proceed to show

γ((φ∗)n) ≤ δ(φn).

To do this, we assume that 0 < s ≤ γ((φ∗)n) and show s ≤ δ(φn). (If
γ((φ∗)n) = 0, then there is nothing to prove.) Note that s ≤ γ((φ∗)n) if
and only if

(11) ∥[φ∗(gkℓ)]∥Mn(X∗) ≤ 1 =⇒ ∥[gkℓ]∥Mn(Y ∗) ≤
1
s
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by (10). Under this assumption, we show the relation

(12) Mn(Y )s ⊂ [{φm(Mm(X)1) : m ∈ N}}]}n .

To do this, we assume that [yij ] ∈ Mn(Y )s. If

[gkℓ] ∈ {φm(Mm(X)1) : m ∈ N}}
n ,

then we have
∥[φ∗(gkℓ)]∥Mn(X∗) = sup{∥⟨[xij ], [φ∗(gkℓ)]⟩∥ : [xij ] ∈ Mn(X)1}

= sup{∥⟨[φ(xij)], [gkℓ]⟩∥ : [xij ] ∈ Mn(X)1}
≤ 1,

and so ∥[gkℓ]∥Mn(Y ∗) ≤
1
s

by (11). Since [yij ] ∈ Mn(Y )s, we have

∥⟨[yij ], [gkℓ]⟩∥ ≤ 1,

and this proves the relation (12) by (4). By the absolute bipolar theorem, we
have

Mn(Y )s ⊂ φn(Mn(X)1), n = 1, 2, . . . .

Since φn is surjective, we see that

Mn(Y )s ⊂ φn(Mn(X)1), n = 1, 2, . . .

by (8), as was desired.
To prove the inequality in (ii), we assume that

(φ∗)n(Mn(Y ∗)1) ⊃ Mn(X∗)s

and ∥[xij ]∥Mn(X) = 1. It suffices to show that ∥φn([xij ])∥Mn(Y ) ≥ s, as in the
proof of the first inequality of (i). Recall that ∥[yij ]∥Mn(Y ) = ∥[yij ]∥Mn(Y ∗∗),
since the inclusion Y ↪→ Y ∗∗ is a complete isometry. Therefore, we have

∥φn([xij ])∥Mn(Y ) = sup{∥⟨[gkℓ], [φ(xij)]⟩∥ : [gkℓ] ∈ Mn(Y ∗)1}
= sup{∥⟨[φ∗(gkℓ)], [xij ]⟩∥ : [gkℓ] ∈ Mn(Y ∗)1}
≥ sup{∥⟨[fkℓ], [xij ]⟩∥ : [fkℓ] ∈ Mn(X∗)s, }
= s · sup{∥⟨[fkℓ], [xij ]⟩∥ : [fkℓ] ∈ Mn(X∗)1}
= s · ∥[xij ]∥Mn(X) = s,

as was desired.
It remains to show the inequality γ(φn) ≤ δ((φ∗)n), under the assumption

that φ is injective. We may assume that γ(φn) > 0. We proceed to show

0 < s ≤ γ(φn) =⇒ s ≤ δ((φ∗)n).

If [fij ] ∈ Mn(X∗)s, then the map f : X → Mn given by f(x) = [⟨x, fij⟩] is
completely bounded with ∥f∥cb ≤ s. Now, the assumption s ≤ γ(φn) shows
that

(13) ∥[φ(xij)]∥Mn(Y ) ≤ 1 =⇒ ∥[xij ]∥Mn(X) ≤
1
s

=⇒ ∥[f(xij)]∥Mn(Mn) ≤ 1.
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If we regard φ(X) as an operator subspace of Y , we have the map

f1 : φ(X) → Mn

such that f = f1 ◦ φ, and the relation (13) says that ∥f1∥cb = ∥(f1)n∥ ≤ 1.
By the Arveson-Wittstock Hahn-Banach theorem, there exists a completely
contractive map g : Y → Mn which extends f1. If g = [gij ] ∈ Mn(Y ∗), then
we see that (φ∗)n([gij ]) = [fij ]. Therefore, we have shown

Mn(X∗)s ⊂ (φ∗)n(Mn(Y ∗)1),

which implies
Mn(X∗)s ⊂ (φ∗)n(Mn(Y ∗)1)

by (8), because our argument shows that (φ∗)n is surjective. Therefore, we
have s ≤ δ((φ∗)n), and this completes the proof. ¤

It is easy to see that the sequences {γ(φn)} and {δ(φn)} are decreasing.
To see this, let n < m. We first show that γ(φm) ≤ γ(φn), or equiva-
lently, s ≤ γ(φm) implies s ≤ γ(φn). Assume that s ≤ γ(φm), that is,
∥[aij ]∥Mm(X) = 1 implies ∥[φ(xij)]∥Mm(Y ) ≥ s by (10). If ∥[xkℓ]∥Mn(X) = 1,
then

∥∥[
xkℓ 0
0 0

]∥∥
Mm(X)

= 1, which implies that

∥[φ(xkℓ)]∥Mn(Y ) =
∥∥∥∥[

φ(xkℓ) 0
0 0

]∥∥∥∥
Mm(Y )

≥ s.

Therefore, we have γ(φn) ≥ s by (10). For the inequality δ(φm) ≤ δ(φn), we
assume that φm(Mm(X)1) ⊃ Mm(Y )s and show φn(Mn(X)1) ⊃ Mn(Y )s. If
y ∈ Mn(Y )s, then y′ =

[
y 0
0 0

]
lies in Mm(Y )s, and so there is x′ ∈ Mm(X)1

such that φm(x′) = y′. If we take the m × m submatrix x of x′ from the left
upper corner of x′, then x ∈ Mn(X)1, and so y = φn(x) ∈ φn(Mn(X)1). For
a completely bounded linear map φ : X → Y between operator spaces X and
Y , we define the nonnegative real number γop(φ) and δop(φ) by

γop(φ) = inf{γ(φn) : n = 1, 2, . . .},
δop(φ) = inf{δ(φn) : n = 1, 2, . . .},

respectively.

Corollary 3.2. Let φ : X → Y be a completely bounded linear map between
operator spaces X and Y , with the dual map φ∗ : Y ∗ → X∗ between the operator
duals Y ∗ and X∗. Then we have the following:

(i) We have δop(φ) ≤ γop(φ∗): The equality δop(φ) = γop(φ∗) holds when-
ever φ is surjective.

(ii) We have γop(φ) ≥ δop(φ∗): The equality γop(φ) = δop(φ∗) holds when-
ever φ is injective.

Let φ : X → Y be a complete contraction, and so γop(φ) ≤ 1 and δop(φ) ≤ 1.
In this case, φ is a complete isometry (respectively complete quotient) if and
only if γop(φ) = 1 (respectively δop(φ) = 1). Therefore, Corollary 3.2 may
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be considered as a generalization of a well-known theorem: φ is a complete
isometry if and only if φ∗ is a complete quotient; φ is a complete quotient if
and only if φ∗ is a complete isometry and φ is surjective.

Corollary 3.3. Let φ : X → Y be a completely bounded linear map between
operator spaces X and Y . Then the following are equivalent:

(i) φ is injective with γop(φ) > 0.
(ii) φ∗ is surjective with δop(φ∗) > 0.
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