• Title/Summary/Keyword: boron sheet

Search Result 85, Processing Time 0.032 seconds

Application of Press Quenching Technology to Automotive Drive Plate (프레스 퀜칭에 의한 자동차 드라이브 플레이트 제조에 관한 연구)

  • Jeong, W.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.588-594
    • /
    • 2011
  • A new manufacturing process is presented for automotive drive plate using a boron-containing carbon steel sheet, which is hot-formed and press quenched. Particular attention was given to the capability of the process in minimizing dimensional change.

The effect of nitrogen flow rate in a predeposition with Boron nitride (보론 나이트라이드를 사용하는 Predeposition 공정에서 질소류량의 영향)

  • 박형무;김충기
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.227-230
    • /
    • 1981
  • The variation of sheet resistance and the reduction of masking oxide thickness with the flow rate of nitrogen gas has been measured in Boron predeposition process with Planar Diffusion source, BN-975. At 900.deg. C, the sheet resistance varied as much as 75% when the nitrogen flow rate was changed from 0.4 liters/min to 2.0 liters/min. At 975.deg. C, however, only 12% of sheet resistance variation was observed under the same flow rate change. The reduction of masking oxide thickness at 975.deg. C for a 5 min predeposition was 600 nm when the nitrogen flow rate was 0.4 liters/min. When the flow rate incresased to 1.9 liters/min, however, only 100nm of masking oxide was consumed in a similar predeposition process.

  • PDF

Synthesis of Hexagonal Boron Nitride Nanosheet by Diffusion of Ammonia Borane Through Ni Films

  • Lee, Seok-Gyeong;Lee, Gang-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.1-252.1
    • /
    • 2013
  • Hexagonal boron nitride (h-BN) is a two dimensional material which has high band-gap, flatness and inert properties. This properties are used various applications such as dielectric for electronic device, protective coating and ultra violet emitter so on. 1) In this report, we were growing h-BN sheet directly on sapphire 2"wafer. Ammonia borane (H3BNH3) and nickel were deposited on sapphire wafer by evaporate method. We used nickel film as a sub catalyst to make h-BN sheet growth. 2) During annealing process, ammonia borane moved to sapphire surface through the nickel grain boundary. 3) Synthesized h-BN sheet was confirmed by raman spectroscopy (FWHM: ~30cm-1) and layered structure was defined by cross TEM (~10 layer). Also we controlled number of layer by using of different nickel and ammonia borane thickness. This nickel film supported h-BN growth method may propose fully and directly growing on sapphire. And using deposited ammonia borane and nickel films is scalable and controllable the thickness for h-BN layer number controlling.

  • PDF

Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene (폴리스타이렌을 이용한 그래핀 합성 및 산화 붕소가 그래핀 합성에 미치는 영향)

  • Choi, Jinseok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.279-285
    • /
    • 2018
  • Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.

Oxide Layer Analysis of Uncoated Boron Steel Sheet for Hot Stamping According to the Atmosphere Oxygen Content (비도금 핫스탬핑용 보론강판의 분위기 산소량에 따른 산화층 분석)

  • J. H. Lee;T. H. Choi;J. H. Song;G. H. Bae
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • As the supply of eco-friendly vehicles increases, the application rate of hot stamping components is rising to reduce vehicle weight and improve safety. Although Al-Si coated steel sheets are commonly used in hot stamping processes, their manufacturing costs are elevated due to process patents and royalties. Various hot stamping studies have been conducted to reduce these production costs. In this study, we derived a process control method for suppressing the oxide layer of hot stamping parts using uncoated boron steel sheets. Firstly, hat-shaped parts were hot stamped under atmospheric conditions to analyze the tendency of oxide layer formation by location. Then, the Gleeble system was used to observe oxide layer formation based on oxygen content under various atmospheric conditions. Finally, the oxide layer thickness was quantitatively measured using SEM images.

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Shin, Hong-Sik;Oh, Se-Kyung;Kang, Min-Ho;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.260-264
    • /
    • 2010
  • In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

Shallow P+-n Junction Formation and the Design of Boron Diffusion Simulator (박막 P+-n 접합 형성과 보론 확산 시뮬레이터 설계)

  • 김재영;이충근;김보라;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.708-712
    • /
    • 2004
  • Shallow $p^+-n$ junctions were formed by ion implantation and dual-step annealing processes. The dopant implantation was performed into the crystalline substrates using BF$_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth and sheet resistance. A new simulator is designed to model boron diffusion in silicon. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using initial conditions and boundary conditions, coupled diffusion equations are solved successfully. The simulator reproduced experimental data successfully.

Lap joint Laser Welding of Hot Stamped Ultra High Strength Steel for Automotive Application (자동차용 핫스탬핑 고강도강 판재의 겹치기 레이저용접)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently ultra high strength steels(UHSS) has been widely applied to the structural or safety components in the automotive industry. Specially, hot stamping boron steel 22MnB5 has shown the crash-resistant characteristics when applying to bumpers and pillars. Lap joint Laser welding of the hot stamped and die quenched sheets of Boron steel was carried out using 3kW Nd/YAG laser. The appropriate Lap joint laser welding conditions were founded separately for four lap joint combinations. The lower sheest is a hot stamped sheet in common and the upper sheet is selected among the hot stamped steel and high strength steels such as SPCC, 370MPa, and 590MPa grade high strength steels. Cross bead sections and local hardening and softening were observed as well as tensile-shear test results.

  • PDF

Ultra low sheet resistance on poly silicon film by Excimer laser activation

  • Lim, Hyuck;Yin, Huaxiang;Xianyu, Wenxu;Kwon, Jang-Yeon;Zhang, Xiaoxin;Cho, Hans-S;Kim, Jong-Man;Park, Kyung-Bae;Kim, Do-Young;Jung, Ji-Sim;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1112-1115
    • /
    • 2005
  • In this study, we performed excimer laser activation on Phosphorus or Boron doped a-Si (amorphous silicon) film. We've got a very low sheet resistance (Rs), Rs was 60 ohm/sq. with phosphorus doping and was 65 ohm/sq. with boron doping at each optimized laser irradiation condition. We've found Rs on activated thin film showed an unprecedented behavior in both cases, because Rs had a strong dependency on the crystallinity of the activated Si film.

  • PDF