• 제목/요약/키워드: blow-up solutions

검색결과 43건 처리시간 0.024초

CRITICAL BLOW-UP AND EXTINCTION EXPONENTS FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION WITH SOURCE

  • Zhou, Jun;Mu, Chunlai
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1159-1173
    • /
    • 2009
  • This paper deals with the critical blow-up and extinction exponents for the non-Newton polytropic filtration equation. We reveals a fact that the equation admits two critical exponents $q_1,\;q_2\;{\in}\;(0,+{\infty})$) with $q_1\;{<}\;q_2$. In other words, when q belongs to different intervals (0, $q_1),\;(q_1,\;q_2),\;(q_2,+{\infty}$), the solution possesses complete different properties. More precisely speaking, as far as the blow-up exponent is concerned, the global existence case consists of the interval (0, $q_2$]. However, when q ${\in}\;(q_2,+{\infty}$), there exist both global solutions and blow-up solutions. As for the extinction exponent, the extinction case happens to the interval ($q_1,+{\infty}$), while for q ${\in}\;(0,\;q_1$), there exists a non-extinction bounded solution for any nonnegative initial datum. Moreover, when the critical case q = $q_1$ is concerned, the other parameter ${\lambda}$ will play an important role. In other words, when $\lambda$ belongs to different interval (0, ${\lambda}_1$) or (${\lambda}_1$,+${\infty}$), where ${\lambda}_1$ is the first eigenvalue of p-Laplacian equation with zero boundary value condition, the solution has completely different properties.

A NOTE ON THE CAUCHY PROBLEM FOR HEAT EQUATIONS WITH COUPLING MOVING REACTIONS OF MIXED TYPE

  • LIU, BINGCHEN;LI, FENGJIE
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.359-367
    • /
    • 2016
  • This paper deals with the Cauchy problem for heat equations with coupling moving reactions of mixed type. After obtaining the infinite Fujita blow-up exponent, we classify optimally the simultaneous and non-simultaneous blow-up for two components of the solutions. Moreover, blow-up rates and set are determined. By using the analogous procedures, one can fill in the gaps for the other two systems, which are studied in the paper 'Australian and New Zealand Industrial and Applied Mathematics Journal' 48(2006)37-56.

BLOW UP OF SOLUTIONS FOR A PETROVSKY TYPE EQUATION WITH LOGARITHMIC NONLINEARITY

  • Jorge, Ferreira;Nazli, Irkil;Erhan, Piskin;Carlos, Raposo;Mohammad, Shahrouzi
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1495-1510
    • /
    • 2022
  • This paper aims to investigate the initial boundary value problem of the nonlinear viscoelastic Petrovsky type equation with nonlinear damping and logarithmic source term. We derive the blow-up results by the combination of the perturbation energy method, concavity method, and differential-integral inequality technique.

FINITE TIME BLOW UP OF SOLUTIONS FOR A STRONGLY DAMPED NONLINEAR KLEIN-GORDON EQUATION WITH VARIABLE EXPONENTS

  • Piskin, Erhan
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.771-783
    • /
    • 2018
  • This paper, we investigate a strongly damped nonlinear Klein-Gordon equation with nonlinearities of variable exponent type $$u_{tt}-{\Delta}u-{\Delta}u_t+m^2u+{\mid}u_t{\mid}^{p(x)-2}u_t={\mid}u{\mid}^{q(x)-2}u$$ associated with initial and Dirichlet boundary conditions in a bounded domain. We obtain a nonexistence of solutions if variable exponents p (.), q (.) and initial data satisfy some conditions.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF

Existence, Blow-up and Exponential Decay Estimates for the Nonlinear Kirchhoff-Carrier Wave Equation in an Annular with Robin-Dirichlet Conditions

  • Ngoc, Le Thi Phuong;Son, Le Huu Ky;Long, Nguyen Than
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.859-888
    • /
    • 2021
  • This paper is devoted to the study of a nonlinear Kirchhoff-Carrier wave equation in an annulus associated with Robin-Dirichlet conditions. At first, by applying the Faedo-Galerkin method, we prove existence and uniqueness results. Then, by constructing a Lyapunov functional, we prove a blow up result for solutions with a negative initial energy and establish a sufficient condition to obtain the exponential decay of weak solutions.

EXISTENCE OF LARGE SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM

  • Sun, Yan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.217-231
    • /
    • 2010
  • We consider a class of elliptic problems of a logistic type $$-div(|{\nabla}_u|^{m-2}{\nabla}_u)\;=\;w(x)u^q\;-\;(a(x))^{\frac{m}{2}}\;f(u)$$ in a bounded domain of $\mathbf{R}^N$ with boundary $\partial\Omega$ of class $C^2$, $u|_{\partial\Omega}\;=\;+{\infty}$, $\omega\;\in\;L^{\infty}(\Omega)$, 0 < q < 1 and $a\;{\in}\;C^{\alpha}(\bar{\Omega})$, $\mathbf{R}^+$ is non-negative for some $\alpha\;\in$ (0,1), where $\mathbf{R}^+\;=\;[0,\;\infty)$. Under suitable growth assumptions on a, b and f, we show the exact blow-up rate and uniqueness of the large solutions. Our proof is based on the method of sub-supersolution.