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BLOW UP OF SOLUTIONS FOR A PETROVSKY TYPE

EQUATION WITH LOGARITHMIC NONLINEARITY
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and Mohammad Shahrouzi

Abstract. This paper aims to investigate the initial boundary value
problem of the nonlinear viscoelastic Petrovsky type equation with non-

linear damping and logarithmic source term. We derive the blow-up re-

sults by the combination of the perturbation energy method, concavity
method, and differential-integral inequality technique.

1. Introduction

In this article, we are concerned with the following viscoelastic Petrovsky
type equation with logarithmic nonlinearity,

utt + ∆2u−
∫ t

0

g (t− s)42 u (s) ds+ |ut|m−2
ut = |u|p−2

u ln |u| ,(1.1)

where (x, t) ∈ Ω× R+ with initial data

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω(1.2)

and boundary conditions

u (x, t) =
∂

∂ν
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,(1.3)

being Ω a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω, and v the
unit outer normal to ∂Ω.

The Petrovsky [17,18] type of equation

utt + ∆2u = f(x, t, u, ut)

originated from the study of beams and plates, and it can also be used in
many branches of physics such as optics, geophysics, nuclear physics, and ocean
acoustics. Many authors gave big attention to this problem for quite a long
time. They made a lot of progress, as reported in [1–3, 6, 8–10, 13–15, 21, 22]
with references therein. Memory damping has its origin in the mathematical
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description of viscoelastic materials. The viscoelastic materials exhibit natural
stabilization mechanism, which is due to the special property of these materials,
to retain a memory of their past history. For nonlinearly damped viscoelastic
equations with logarithmic source effect and time delay, see [16] with references
therein.

Alabau-Boussouira et al. [1] discussed the initial-boundary value problem of
a linear Petrovsky equation related to a plate model with memory in absence
of source term,

utt + ∆2u−
∫ t

0

g (t− s)42 u (s) ds = 0,(1.4)

and showed that the solution decays exponentially or polynomially as t → ∞
if the initial data is sufficient small.

An energy source that acts in opposition to damping can cause destabiliza-
tion in the model. The Petrovsky type models without memory and source
term were discussed by Messaoudi [15],

utt + ∆2u+ |ut|m−2
ut = |u|p−2

u ln |u| ,(1.5)

where was established an existence result, and proved that the solution exists
globally if m ≥ p, however, if m < p and the initial energy is negative, the
solution blows up in finite time. Later, Chen and Zhou [6] proved that the
solution of (1.5) blows up with positive initial energy. Moreover, they claimed
that the solution blows up in finite time for vanishing initial energy under the
condition m = 2.

Li and Gao [10] considered (1.4) with memory and source term,

(1.6) utt + ∆2u−
∫ t

0

g (t− s)42 u (s) ds+ |ut|m−2
ut = |u|p−2

u.

They showed that the solution of the initial-boundary value problem of the
model (1.6) blows up in finite time. In the case m = 2, they studied the blow-
up of solution with a different method. In [13], Liu et al. studied the finite time
blow-up for solutions of problem (1.6) with arbitrary high initial energy. Also,
Liu et al. [14] obtained global nonexistence results of the problem (1.6) with a
weak damping term for positive initial energy. Chen and Zhou [6] proved that
the solution blows up with positive initial energy.

In recent years, a great deal of mathematical effort has been devoted to the
study of nonlinear wave equations with logarithmic nonlinearity. The logarith-
mic source term has a wide range of applications of physics such as quantum
field theory, nuclear physics, geophysics, optics [4, 5]. The hyperbolic type
equations with logarithmic source terms drew mathematicians’ attention. The
global existence, blow up, local existence, and asymptotic behavior of solutions
were studied by many authors, see for instance [3, 5, 7, 9, 11,12,19,20,23].
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Gharabli et al. [3] considered the Petrovsky type equation with memory term
and logarithmic nonlinearity given by

(1.7) |ut|ρ utt + ∆2u+ ∆2utt −
∫ t

0

g (t− s)42 u (s) ds = ku lnu.

They established the local existence and general decay rate of the solutions of
the problem (1.7). Later, in [2] was treated (1.7) in the absence ∆2utt and in
the presence of u for ρ = 0 and then, was proved the existence and general
decay result under different suitable conditions.

As far as we know, in works about the Petrovsky type equation with vis-
coelastic and logarithmic nonlinearity, as seen from the above statements, there
are not enough results on the blow-up problem (1.1) with positive initial energy.
Hence, we intend to study finite time blow-up of the solution to the problem
(1.1).

This work is written as follows. In Section 2, we prepare preliminaries, some
notations. In the last section, we establish the blow-up results of the solution.

Throughout the present paper, we denote by (·, ·) the inner product of L2

space. We use the standard Lebesgue space L2 (Ω) and Sobolev space H2
0 (Ω)

with their usual scalar products and norms.

2. Preliminaries

Firstly, we present the Sobolev’s embedding inequality: suppose that p is a
constant such that 1 ≤ p ≤ 2n

n−4 if n ≥ 5; p ≥ 1 if n ≤ 4, then H2
0 (Ω) ↪→ Lp (Ω)

continuously, and for u ∈ H2
0 (Ω)

(2.1) ‖u‖p ≤ C ‖∆u‖2 ,
where C denotes the best embedding constant.

With regard to problem (1.1), we assume that the parameter p,m and the
kernel function g satisfy the following assumptions.

(A1) 2 < p <∞, if n ≤ 4; 2 < p < 2(n−2)
n−4 , if n ≥ 5.

(A2) 2 ≤ m <∞, if n ≤ 4; 2 ≤ m ≤ 2n
n−4 , if n ≥ 5.

(A3) g : [0,+∞) → [0,+∞) is a nonincreasing and differentiable function
satisfying

(2.2) 1−
∫ ∞

0

g (s) ds := l > 0.

In addition to (2.2), g satisfies, the inequalities

g (s) ≥ 0, g′ (s) ≤ 0,

(2.3)

∫ ∞
0

g (s) ds <
(p (1− b) /2)− 1

(p (1− b) /2)− 1 + (1/2p (1− b))
.

We first state a local existence theorem. Using the Faedo-Galerkin method
and the contraction mapping principle, the local existence result can also be
proved in a similar way to those of [8].
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Theorem 2.1. Assume that (A1) and (A3) hold. Then, for the initial data
u0 ∈ H2

0 (Ω) , u1 ∈ L2 (Ω) , there exists T > 0, such that the problem (1.1)
admits a unique local weak solution on [0;T ].

Remark 2.2. Condition (2.2) is necessary to guarantee the hyperbolicity and
well-posedness of system (1.1).

In this part, we will introduce some material necessary in the proof of our
main result (Theorem 3.1). For this purpose, we give some lemmas which will
be used throughout this work.

Let us begin with defining the following total energy functional

E(t) =
1

2
‖ut‖2 +

1

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2 +

1

2
(g ◦∆u) (t)(2.4)

+
1

p2
‖u‖pp −

1

p

∫
Ω

up ln |u| dx,

where

(2.5) (g ◦∆u) (t) =

∫ t

0

g (t− s) ‖∆u (s)−∆u (t)‖2 ds.

Lemma 2.3. Suppose that (A1) and (A2) hold and let u (t) be the solution of
the problem (1.1). Then the energy functional E (t) is decreasing with respect
to t and

(2.6) E′ (t) =
1

2
(g′ ◦∆u) (t)− 1

2

∫ t

0

g (s) ds ‖∆u (t)‖2 − ‖ut‖mm ≤ 0,

where

(g′ ◦∆u) (t) =

∫ t

0

g′ (t− s)
∫

Ω

|∆u (s)−∆u (t)|2 dxdt.

Proof. We multiply both sides of (1.1) by ut and then integrating from 0 to t
and using Green formula, we have

E′ (t) =
1

2
(g′ ◦∆u) (t)− 1

2

∫ t

0

g (s) ds ‖∆u (t)‖2 − ‖ut‖mm ≤ 0,

that is,

(2.7) E (t) =

∫ t

0

[
1

2
(g′ ◦∆u) (t)− 1

2

∫ t

0

g (s) ds ‖∆u (t)‖2 − ‖ut‖mm

]
+ E (0) .

�

Lemma 2.4. Suppose that (A1)-(A3) hold. We also define

G(α) =
1

2
α2 − Cp+1

1

p
αp+1 with C/l1/2 = C1,

and

α (t) =
(
l ‖∆u (t)‖2 + (g ◦∆u) (t)

) 1
2

.
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Then

(2.8) E(t) ≥ G(α(t)).

Proof. We first note that, by (2.4), we obtain

E(t) ≥ 1

2

(
1−
∫ t

0

g (s) ds

)
‖∆u‖2+

1

2
(g ◦∆u) (t)+

1

p2
‖u‖pp −

1

p

∫
Ω

up ln |u| dx

≥ 1

2
l ‖∆u‖2 +

1

2
(g ◦∆u) (t)− 1

p
‖u‖p+1

p+1

≥ 1

2
l ‖∆u‖2 +

1

2
(g ◦∆u) (t)− 1

p
Cp+1 ‖∆u‖p+1

2

≥ 1

2

(
l ‖∆u‖2 + (g ◦∆u) (t)

)
− 1

p
Cp+1

1

(
l ‖∆u (t)‖2 + (g ◦∆u) (t)

) p+1
2

=
1

2
α2 − Cp+1

1

p
αp+1

= G(α(t)). �

Remark 2.5. We can easily see that G is increasing for 0 < α < λ, decreasing

for α > λ, limα→∞G(α) → −∞, G has a maximum at λ =
(

p
p+1

) 1
p−1

C
− p+1
p−1

1

and the maximum value is

(2.9) G(λ) =

(
1

2

(
p

p+ 1

) 2
p−1

− 1

p

(
p

p+ 1

) p+1
p−1

)
C
− 2(p+1)

p−1

1 = E1.

Lemma 2.6. Assume that (A1)-(A3) hold. Suppose that the solution u of
problem (1.1) satisfies

(2.10) E(0) < E1, α(0) = l
1
2 ‖∆u0‖2 > λ =

(
p

p+ 1

) 1
p−1

C
− p+1
p−1

1 .

Then there is a constant λ1 > λ such that

α (t) =
(
l ‖∆u (t)‖2 + (g ◦∆u) (t)

) 1
2 ≥ λ1

and

(2.11) ‖u(t)‖p+1 ≥ C1λ1.

Proof. Since E(0) < E1 and G(α) is a continuous function, there exist λ′1 and
λ1 with λ′1 < λ < λ1 such that

G(λ′1) = G(λ1) = E(0),

which combined with Lemma 2.4 gives

(2.12) G(α(0)) < E(0) = G(λ1).

By (2.9)-(2.12) and Remark 2.5, we deduce

(2.13) α(0) ≥ λ1.
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Now we prove the first conclusion. If not, then there exists t0 > 0 such that

α2 (t0) =
(
l ‖∆u (t0)‖2 + (g ◦∆u) (t0)

)
< λ2

1.

Case1. If λ′1 < α (t0) < λ1, according to Lemma 2.3 and Remark 2.5, we
know G(α(t0)) > E(0) ≥ E(t0), which contradicts to Lemma 2.4.

Case 2. If α (t0) < λ′1, then α (t0) < λ′1 < λ1. Set

h(t) = α(t)− λ′1 + λ1

2
.

Clearly, h(t) is a continuous function, h(t0) < 0 and h(0) > 0 by applying

(2.13). Hence, there exists t1 ∈ (0, t0) such that h(t1) = 0, that is α(t1) =
λ′1+λ1

2
which implies

G(α(t1)) > E(0) ≥ E(t1).

This contradicts to Lemma 2.4.
To establish (2.11), by using the definition of energy function, we obtain

E(0) +
1

p

∫
Ω

up ln |u| dx ≥ 1

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2 +

1

2
(g ◦∆u) (t) .

Consequently, we obtain

1

p
‖u(t)‖p+1

p+1 ≥
1

p

∫
Ω

up ln |u| dx ≥ 1

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2(2.14)

+
1

2
(g ◦∆u) (t)− E(0)

≥ 1

2

(
l ‖∆u‖2 + (g ◦∆u) (t)

)
− E(0)

≥ 1

2
λ2

1 −G(λ1) =
Cp+1

1

p
λp+1

1 .

The proof is completed. �

We give some lemmas which will be used in our proof. For proofs of Lemmas
2.7-2.10, we refer the readers to Kafini and Messaoudi [9].

Lemma 2.7. Suppose that (A1)-(A2) hold. There exists a positive constant
depending on Ω only such that

(2.15)

(∫
Ω

up ln |u| dx
) s
p

≤ C
[∫

Ω

up ln |u| dx+ ‖∆u‖22

]
for any u ∈ Lp+1 (Ω) and 2 ≤ s ≤ p, provided that

∫
Ω
up ln |u| dx ≥ 0.

Lemma 2.8. Suppose that (A1)-(A2) hold. There exists a positive constant
depending on Ω only such that

(2.16) ‖u‖pp ≤ C
[∫

Ω

up ln |u| dx+ ‖∆u‖22

]
for any u ∈ Lp (Ω) , provided that

∫
Ω
up ln |u| dx ≥ 0.
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Thus, the following estimate holds.

Corollary 2.9. Let the assumptions of Lemma 2.7 and m < p hold. Using the

fact that ‖u‖mm ≤ C ‖u‖
m
p ≤ C

(
‖u‖pp

)m
p

. Then we obtain the following

(2.17) ‖u‖mm ≤ C

[(∫
Ω

up ln |u| dx
)m

p

+ ‖∆u‖
2m
p

]
.

Lemma 2.10. Suppose that (A1)-(A2) hold. The there exists a positive con-
stant depending on Ω only such that

(2.18) ‖u‖sp ≤ C
[
‖u‖pp + ‖∆u‖22

]
for any u ∈ Lp (Ω) and 2 ≤ s ≤ p.

We define

(2.19) H (t) = E1 − E (t) ,

and we will use throughout this paper. As a result of Lemma 2.10 and definition
of H (t) and E (t) , we have the following estimative:

Lemma 2.11. Let u be a solution of (1.1). Suppose that (A1) and (A2) hold.
Then we get

(2.20) ‖u‖sp ≤ C
(
−H (t)− ‖ut‖2 − (g ◦∆u) (t) + ‖u‖p+1

p+1 + ‖u‖pp
)

for any u ∈ Lp (Ω) and 2 ≤ s ≤ p.

Proof. Using (2.2) and definition of E (t) , we obtain

1

2
l ‖∆u‖2 ≤ 1

2

(
1−

∫ ∞
0

g (s) ds

)
‖∆u‖2

≤ E (t)− 1

2

(
‖ut‖2 + (g ◦∆u) (t) +

2

p2
‖u‖pp

)
+

1

p

∫
Ω

up ln |u| dx

≤ E1 −H (t)− 1

2

(
‖ut‖2 + (g ◦∆u) (t) +

2

p2
‖u‖pp

)
+

1

p
‖u‖p+1

p+1 .

Using Remark 2.5 and Lemma 2.6, we note that(
p+ 1

p

) p+1
p−1

‖u‖p+1
p+1 ≥ C

− 2(p+1)
p−1

1

and

E1 =

(
p

p+ 1

) p+1
p−1

[
1

2

(p+ 1)

p
− 1

p

]
.

Consequently, we obtain

(2.21) E1 ≤
[

1

2

(
p+ 1

p

)
− 1

p

]
‖u‖p+1

p+1 .
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Then, a combination of Lemma 2.10 and (2.21) leads to

‖u‖sp ≤
p+ 1

2p
‖u‖p+1

p+1 −H (t)− 1

2
‖ut‖2 −

1

2
(g ◦∆u) (t)− 1

p2
‖u‖pp

≤ C
(
−H (t)− ‖ut‖2 − (g ◦∆u) (t) + ‖u‖p+1

p+1 + ‖u‖pp
)
.

Finally we give the desired result. �

3. Blow up result

In this part, we state and prove a blow up result for problem (1.1) in finite
time with E(0) < E1.

Theorem 3.1. Assume that (A1) , (A2) and m < p hold. Assume further that
g satisfies (2.2), (2.3). Then any solution of (1.1) with initial data blows up
in finite time provided that E(0) < E1.

Proof. Using (2.4), Lemma 2.3, (2.19) and E(0) < E1, we get

0 < E1 − E(0) = H (0)

≤ H (t) = E1 −
1

2
‖ut‖2 −

1

2

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2

− 1

2
(g ◦∆u) (t)− 1

p2
‖u‖pp +

1

p

∫
Ω

up ln |u| dx.

By (2.9) and Lemma 2.6, we note that

E1 −
1

2

[
‖ut‖2 +

(
1−

∫ t

0

g (s) ds

)
‖∆u‖2 + (g ◦∆u) (t) +

2

p2
‖u‖pp

]
(3.1)

< E1 −
1

2
λ2 = −1

p

(
p

p+ 1

) p+1
p−1

C
− 2(p+1)

p−1

1 < 0

for ∀t ≥ 0, which implies

(3.2) 0 < H (0) ≤ H (t) ≤ 1

p

∫
Ω

up ln |u| dx.

Let us define the following function

(3.3) L (t) = H1−β (t) + ε

∫
Ω

uutdx,

where β is a suitable positive constant which will be determined later and for

(3.4)
2 (p−m)

(m− 1) p2
< β <

p−m
(m− 1) p

< 1.

Now, differentiating L (t) with respect to t and using equation (1.1) we have

L′ (t) = (1− β)H−β (t)H ′ (t) + ε

∫
Ω

|ut|2 dx+

∫
Ω

uuttdx

≥ (1− β)H−β (t)

[
‖ut‖mm −

1

2
(g′ ◦∆u) (t) +

1

2

∫ t

0

g (s) ds ‖∆u (t)‖2
]

+ ε ‖ut‖2
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+ ε

∫
Ω

u

(
−∆2u+

∫ t

0

g (t− s)42 u (s) ds− |ut|m−2
ut + |u|p−2

u ln |u|
)
dx

≥ (1− β)H−β (t) ‖ut‖mm + ε ‖ut‖2 − ε ‖∆u‖2

+ ε

∫ t

0

g (t− s)
∫

Ω

4u (t)4 u (s) dxds− ε
∫

Ω

|ut|m−2
utudx+ ε

∫
Ω

up ln |u| dx.

That is

L′ (t) ≥ (1− β)H−β (t) ‖ut‖mm + ε ‖ut‖2 − ε ‖∆u‖2(3.5)

+ ε

∫ t

0

g (t− s) ‖∆u (t)‖2

+ ε

∫ t

0

g (t− s)
∫

Ω

4u (t) [4u (s)−4u (t)] dxds

− ε
∫

Ω

|ut|m−2
utudx+ ε

∫
Ω

up ln |u| dx.

In view of Young’s inequality, for any δ > 0 we obtain∣∣∣∣∫ t

0

g (t− s)
∫

Ω

4u (t) [4u (s)−4u (t)] dxds

∣∣∣∣(3.6)

≤ δ

∫ t

0

g (t− s) ‖4u (s)−4u (t)‖2 ds+
1

4δ

∫ t

0

g (s) ds ‖4u (t)‖2

= δ (g ◦∆u) (t) +
1

4δ

∫ t

0

g (s) ds ‖4u (t)‖2 .

Taking (3.6) into (3.5) yields that

L′ (t) ≥ (1− β)H−β (t) ‖ut‖mm + ε ‖ut‖2 − ε
∫

Ω

|ut|m−2
utudx(3.7)

− ε
(

1−
∫ t

0

g (s) ds

)
‖∆u (t)‖2 + ε

∫
Ω

up ln |u| dx

− εδ (g ◦∆u) (t)− ε

4δ

∫ t

0

g (s) ds ‖4u (t)‖2 .

We use the definition of H (t) to substitute for
∫

Ω
up ln |u| dx for 0 < b < p−1

p .

Therefore (3.7) takes form

L′ (t) ≥ (1− β)H−β (t) ‖ut‖mm + ε

(
1 +

p (1− b)
2

)
‖ut‖2

+ εp (1− b)H (t)− εp (1− b)E1 + ε
(1− b)
p

‖u‖pp

+ ε

[(
p (1− b)

2
− 1

)
−
(
p (1− b)

2
− 1 +

1

4δ

)∫ ∞
0

g (s) ds

]
‖4u (t)‖2

+ ε

(
p (1− b)

2
− δ
)

(g ◦∆u) (t) + εb

∫
Ω

up ln |u| dx− ε
∫

Ω

|ut|m−2
utudx
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for a positive number δ, 0 < δ < p(1−b)
2 . Recalling (2.3) and p > 2, the

inequality above reduces to

L′ (t) ≥ (1− β)H−β (t) ‖ut‖mm + ε

(
1 +

p (1− b)
2

)
‖ut‖2(3.8)

+ εp (1− b)H (t)− εp (1− b)E1

+ ε
(1− b)
p

‖u‖pp + εµ1 ‖4u (t)‖2 + εµ2 (g ◦∆u) (t)

+ εb

∫
Ω

up ln |u| dx− ε
∫

Ω

|ut|m−2
utudx.

At this point we choose 0 < b < p−1
p . This implies that

p(1− b)
2

− 1 +
1

4δ
>
p(1− b)

2
− 1 +

1

2p(1− b)
=

[p(1− b)− 1]2

2p(1− b)
> 0.

Thus if we choose b small enough, then we get from (2.3)

µ1 =

(
p (1− b)

2
− 1

)
−
(
p (1− b)

2
− 1 +

1

4δ

)∫ ∞
0

g (s) ds > 0,

µ2 =
p (1− b)

2
− δ > 0.

To estimate the ninth term of (3.8), we again use Young’s inequality

AB ≤ δr

r
Ar +

δ−q

q
Aq, A,B ≥ 0 for all δ > 0,

1

r
+

1

q
= 1,

with r = m and q = m
m−1 . So we get∫

Ω

|ut|m−2
utudx ≤

τm

m
‖u‖mm +

m− 1

m
τ−

m
m−1 ‖ut‖mm ,

which yields, by substitution in (3.8),

L′ (t) ≥
[
(1− β)H−β (t)− εm− 1

m
τ−

m
m−1

]
‖ut‖mm − ε

τm

m
‖u‖mm(3.9)

− εp (1− b)E1

+ ε

(
1 +

p (1− b)
2

)
‖ut‖2 + εµ1 ‖4u (t)‖2 + εµ2 (g ◦∆u) (t)

+ εp (1− b)H (t) + ε
(1− b)
p

‖u‖pp + εb

∫
Ω

up ln |u| dx.

Of course (3.9) holds even if τ is time dependent since the integral is taken

over the x-variable. Therefore by choosing τ so that τ−
m
m−1 = M1H

−β(t), for
M1 to be specified later, and substituting in (3.9), we get

L′ (t) ≥
[
(1− β)− εm− 1

m
M1

]
H−β (t) ‖ut‖mm(3.10)
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− ε (M1)
1−m

m
Hβ(m−1)(t) ‖u‖mm − εp (1− b)E1

+ ε

(
1 +

p (1− b)
2

)
‖ut‖2 + εµ1 ‖4u (t)‖2 + εµ2 (g ◦∆u) (t)

+ εp (1− b)H (t) + ε
(1− b)
p

‖u‖pp + εb

∫
Ω

up ln |u| dx.

By exploiting (3.2), Corollary 2.9 and Young’s inequality, we have

Hβ(m−1) ‖u‖mm(3.11)

≤
(

1

p

∫
Ω

up ln |u| dx
)β(m−1)

‖u‖mm

≤ C

(∫
Ω

up ln |u| dx
)β(m−1)

[(∫
Ω

up ln |u| dx
)m

p

+ ‖∆u‖
2m
p

]

≤ C

[(∫
Ω

up ln |u| dx
)β(m−1)+m

p

+

(∫
Ω

up ln |u| dx
)β(m−1)

‖∆u‖
2m
p

]

≤ C

[(∫
Ω

up ln |u| dx
)β(m−1)+m

p

+

(∫
Ω

up ln |u| dx
)β(m−1) p

p−m

+ ‖∆u‖2
]
.

From (3.4)

2 < βp (m− 1) +m ≤ p and 2 <
β (m− 1) p2

p−m
≤ p.

Making using of Lemma 2.7, (3.11) yields that

(3.12) Hβ(m−1) ‖u‖mm ≤ C
[∫

Ω

up ln |u| dx+ ‖∆u‖2
]
.

Combining (3.12) and (3.10) we arrive at

L′ (t) ≥
[
(1− β)− εm− 1

m
M1

]
H−β (t) ‖ut‖mm(3.13)

+ ε

(
1 +

p (1− b)
2

)
‖ut‖2

− εp (1− b)E1 + εµ2 (g ◦∆u) (t)

+ ε

(
µ1 −

(M1)
1−m

m
C

)
‖4u (t)‖2 + εp (1− b)H (t)

+ ε
(1− b)
p

‖u‖pp + ε

(
b− (M1)

1−m

m
C

)∫
Ω

up ln |u| dx.

Noting that

H (t) ≥ E1 −
1

2
‖ut‖2 −

1

2
‖∆u‖2 − 1

2
(g ◦∆u) (t)(3.14)
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− 1

p
‖u‖pp +

1

p

∫
Ω

up ln |u| dx.

Inserting (3.14) into (3.13) and taking p = p− 2a+ 2a, with

p

2
> a > max

{
p (1− 2µ1)

2l
,
p (1− µ2)

2

}
> 1,

L′ (t) ≥
[
(1− β)− εm− 1

m
M

]
H−β (t) ‖ut‖mm(3.15)

+ ε (1 + a (1− b)) ‖ut‖2

− 2ε (1− b) a
[
p+ 1

2p
− 1

p

]
‖u‖p+1

p+1

+ ε

(
µ2 −

(p− 2a) (1− b)
2

)
(g ◦∆u) (t)

+ ε

(
µ1 −

(M1)
1−m

m
C − (p− 2a) (1− b) l

2

)
‖4u (t)‖2

+ ε (1− b) (p− 2a)H (t) + ε
(1− b)
p

(1− p+ 2a) ‖u‖pp

+ ε

(
b− (M1)

1−m

m
C +

(p− 2a) (1− b)
p

)∫
Ω

up ln |u| dx.

Then by ln |u| ≥ 1, ∫
Ω

up ln |u| dx ≥ ‖u‖pp ,

and (3.15) becomes

L′ (t) ≥
[
(1− β)− εm− 1

m
M

]
H−β (t) ‖ut‖mm

+ ε (1 + a (1− b)) ‖ut‖2

− 2ε (1− b) a
[
p+ 1

2p
− 1

p

]
‖u‖p+1

p+1

+ ε

(
µ2 −

(p− 2a) (1− b)
2

)
(g ◦∆u) (t)

+ ε

(
µ1 −

(M1)
1−m

m
C − (p− 2a) (1− b) l

2

)
‖4u (t)‖2

+ ε (1− b) (p− 2a)H (t)

+ ε

(
b+

1− b
p
− (M1)

1−m

m
C

)
‖u‖pp .
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At this point, we take M1 sufficiently large such that

b+
1− b
p
− (M1)

1−m

m
C > 0,

and

µ1 −
(M1)

1−m

m
C − (p− 2a) (1− b) l

2
> 0.

Since H(0) = E1 − E(0) > 0, and M1 and b are fixed, taking ε small enough
yields

(1− β)− εm− 1

m
M ≥ 0,

and

(3.16) L (0) = H1−β (0) + ε

∫
Ω

u0u1dx > 0.

Therefore, (3.15) takes the form

(3.17) L′ (t) ≥ λ
[
H (t) + ‖ut‖2 + ‖∆u‖2 + (g ◦∆u) (t) + ‖u‖p+1

p+1 + ‖u‖pp
]
,

where λ > 0 is the minimum of the coefficients of H (t), ‖ut‖2, (g ◦∆u) (t),

‖∆u‖2, ‖u‖pp and
∫

Ω
up ln |u| dx.

Consequently, we obtain

(3.18) L (t) > L (0) , t ≥ 0.

Now we estimate ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ ≤ ‖u‖ ‖ut‖ ≤ C ‖u‖p ‖ut‖ ,
which implies ∣∣∣∣∫

Ω

uutdx

∣∣∣∣ 1
1−α

≤ C ‖u‖
1

1−α
p ‖ut‖

1
1−α .

Applying Young’s inequality we get

(3.19)

∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

≤ C
[
C ‖u‖

µ
1−α
p ‖ut‖

κ
1−α
]

for
1

µ
+

1

κ
= 1.

To be able to use Lemma 2.11, we take κ = 2/ (1− α), to get

µ = 2 (1− α) / (1− 2α) .

Therefore (3.19) has the form∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

≤ C
[
‖ut‖2 + ‖u‖sp

]
,

where s = 2/ (1− 2α) ≤ p. By using Lemma 2.11 we get∣∣∣∣∫
Ω

uutdx

∣∣∣∣1/(1−α)

≤ C
[
H (t) + ‖ut‖2 + ‖∆u‖2 + (g ◦∆u) (t) + ‖u‖p+1

p+1 + ‖u‖pp
]
.
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On the other hand by (a+ b)
p ≤ 2p−1 (ap + bp) , we have

L (t)
1

1−α =

[
H1−α (t) + ε

∫
Ω

uutdx

] 1
1−α

(3.20)

≤ 21/(1−α)

[
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−α
]

≤ C
[
H (t) + ‖ut‖2 + ‖∆u‖2 + (g ◦∆u) (t) + ‖u‖p+1

p+1 + ‖u‖pp
]
.

By associating (3.17) and (3.20) we arrive at

(3.21) L′ (t) ≥ ξL
1

1−α (t) ,

where ξ is a positive constant.
Integration of (3.21) over (0, t) we reach

L
α

1−α (t) ≥ 1

L−
α

1−α (0)− ξαt
1−α

.
�
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[5] T. Cazenave and A. Haraux, Équations d’évolution avec non linéarité logarithmique,
Ann. Fac. Sci. Toulouse Math. (5) 2 (1980), no. 1, 21–51.

[6] W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Non-

linear Anal. 70 (2009), no. 9, 3203–3208. https://doi.org/10.1016/j.na.2008.04.024
[7] H. Di, Y. Shang, and Z. Song, Initial boundary value problem for a class of strongly

damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real

World Appl. 51 (2020), 102968, 22 pp. https://doi.org/10.1016/j.nonrwa.2019.

102968

[8] T. G. Ha and S.-H. Park, Blow-up phenomena for a viscoelastic wave equation with

strong damping and logarithmic nonlinearity, Adv. Difference Equ. 2020, Paper No.
235, 17 pp. https://doi.org/10.1186/s13662-020-02694-x

[9] M. Kafini and S. Messaoudi, Local existence and blow up of solutions to a logarithmic

nonlinear wave equation with delay, Appl. Anal. 99 (2020), no. 3, 530–547. https:

//doi.org/10.1080/00036811.2018.1504029

https://doi.org/10.1016/j.jfa.2007.09.012
https://doi.org/10.1016/j.jfa.2007.09.012
https://doi.org/10.3934/cpaa.2019009
https://doi.org/10.1007/s00028-017-0392-4
https://doi.org/10.1016/j.na.2008.04.024
https://doi.org/10.1016/j.nonrwa.2019.102968
https://doi.org/10.1016/j.nonrwa.2019.102968
https://doi.org/10.1186/s13662-020-02694-x
https://doi.org/10.1080/00036811.2018.1504029
https://doi.org/10.1080/00036811.2018.1504029


PETROVSKY TYPE EQUATION WITH LOGARITHMIC NONLINEARITY 1509

[10] F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with

memory, Appl. Math. Comput. 274 (2016), 383–392. https://doi.org/10.1016/j.amc.

2015.11.018

[11] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and

strong damping terms and logarithmic source term, Adv. Nonlinear Anal. 9 (2020),
no. 1, 613–632. https://doi.org/10.1515/anona-2020-0016

[12] G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear

damping and a logarithmic source term, Electron. Res. Arch. 28 (2020), no. 1, 263–289.
https://doi.org/10.3934/era.2020016

[13] L. Liu, F. Sun, and Y. Wu, Blow-up of solutions for a nonlinear Petrovsky type equation

with initial data at arbitrary high energy level, Bound. Value Probl. 2019 (2019), Paper
No. 15, 18 pp. https://doi.org/10.1186/s13661-019-1136-x

[14] L. Liu, F. Sun, and Y. Wu, Finite time blow-up for a nonlinear viscoelastic Petrovsky

equation with high initial energy, Partial Differ. Equ. Appl. 1 (2020), no. 5, Paper No.
31, 18 pp. https://doi.org/10.1007/s42985-020-00031-1

[15] S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math.

Anal. Appl. 265 (2002), no. 2, 296–308. https://doi.org/10.1006/jmaa.2001.7697
[16] S.-H. Park, Blowup for nonlinearly damped viscoelastic equations with logarithmic source

and delay terms, Adv. Difference Equ. 2021 (2021), Paper No. 316, 14 pp. https:

//doi.org/10.1186/s13662-021-03469-8
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