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ODES RELATED WITH SOME NONLOCAL SCHRÖDINGER

EQUATIONS AND ITS APPLICATIONS

Hyungjin Huh

Abstract. We obtain ordinary differential equations related with some

nonlocal Schrödinger equations. As applications, we prove finite time
blow-up or extinction of solutions.

1. Introduction

We are interested in the following systems of Schrödinger equations with
nonlocal terms

(1.1)

i∂tu+ ∆u+ V1u = iαu

(∫
Ω

(|u|2+|v|2)(x, t)dx

)p
+f1(|u|2, |v|2)u,

i∂tv + ∆v + V2v = iβv

(∫
Ω

(|u|2+|v|2)(x, t)dx

)p
+f2(|u|2, |v|2)v,

and

(1.2)

i∂tu+ ∆u+ V1u = iαu

(∫ t

0

∫
Ω

(|u|2+|v|2)(x, s)dxds

)p
+f1(|u|2, |v|2)u,

i∂tv + ∆v + V2v = iβv

(∫ t

0

∫
Ω

(|u|2+|v|2)(x, s)dxds

)p
+f2(|u|2, |v|2)v,

with initial and boundary conditions

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

u(x, t) = 0, v(x, t) = 0 t > 0, x ∈ ∂Ω.

Here u, v are complex valued functions and Vj are real valued potential func-
tions. The nonlinear terms fj are real valued polynomials with respect to |u|2
and |v|2. α, β are real constants and p is an integer. Ω is a smoothly bounded
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domain of Rn or whole space Rn. In the case of Rn, the boundary condition is
understood as lim|x|→∞(u(x, t), v(x, t)) = (0, 0).

Some parabolic equations with nonlocal terms have been studied in [2]. The
systems (1.1) and (1.2) are Schrödinger versions of them. We are also interested
in the following system of Schrödinger equations

i∂tu+ ∆u+ V1u = iαu

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p
+ f1(|u|2, |v|2)u,

i∂tv + ∆v + V2v = iβv

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p
+ f2(|u|2, |v|2)v,

(1.3)

where u, v are complex valued functions defined on R1+1. While integrals in
(1.1), (1.2) are functions of t, the integral in (1.3) is a function of x and t. The
similar equations have been studied in [3].

We will derive some precise formulas for behaviors of L2 norm of nonlinear
nonlocal Schrödinger equations (1.1), (1.2) and (1.3) as long as solutions exist.
From now on, we assume that Vi = Vi(x) is a given smooth real-valued potential
function satisfying

m∑
j=0

‖∇jVi‖L∞ ≤ Cm <∞ for a positive integer m > n/2.

Then it can be proved that the equations (1.1), (1.2) and (1.3) admit a unique
local solution u, v in time interval [0, T ).

u, v ∈ C([0, T );Wm,2(Ω)).

Therefore, the equations we will derive are valid in the time interval [0, T )
where solutions exist. Let us define functions

x(t) =

∫
Ω

(|u|2 + |v|2)(x, t)dx and y(t) =

∫
Ω

(|u|2 − |v|2)(x, t)dx.

Our first result is concerned with the system (1.1).

Theorem 1.1. As long as the solutions u, v of (1.1) exist, we have the fol-
lowing ODEs.

(i) For the case β = α, we have

dx

dt
= 2αxp+1.

(ii) For the case β = −α, we have

dy

dt
= 2α(y2 + c2)

1+p
2 and x2 = y2 + c2,

where c2 = 4‖u0‖2L2‖v0‖2L2 .

As applications of the ODEs, we show finite time blow-up or extinction of
solutions in Corollary 2.1. Our second result is concerned with the system

(1.2). Let us define X(t) =
∫ t

0
x(s) ds.
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Theorem 1.2. Let p be a nonnegative integer. As long as the solutions u, v
of (1.2) exist, we have the following equations.

(i) For the case β = α, we have

dX

dt
=

2α

p+ 1
Xp+1(t) + ‖u0‖2L2 + ‖v0‖2L2 .

(ii) For the case β = −α, we have

y(t) = y(0) +
2α

p+ 1

(∫ t

0

√
y2(s) + c2 ds

)p+1

and x2 = y2 + c2,

where c2 = 4‖u0‖2L2‖v0‖2L2 .

As mentioned above, the equation (1.3) is different from (1.1) in that the
integral in (1.3) is a function of x and t.

Theorem 1.3. As long as the solutions u, v of (1.3) exist, we have the fol-
lowing ODE.

(i) For the case β = α, we have

dx

dt
=

2α

p+ 1
xp+1.

(ii) For the case of α > 0 and p > 0, we have

d

dt

∫
R
|u(x, t)|2 dx ≥ 2α

p+ 1

(∫
R
|u(x, t)|2 dx

)p+1

.

As applications of Theorems 1.2 and 1.3, we can show several behaviors of
solutions to (1.2) and (1.3). We prove Theorem 1.1 in Section 2. Theorems 1.2
and 1.3 are proved in Sections 3 and 4 respectively.

2. Proof of Theorem 1.1 and its applications

Multiplying (1.1) by ū, v̄ respectively and taking imaginary parts of them,
we obtain

∂

∂t
|u(x, t)|2 + i(u∆ū− ū∆u) = 2α|u(x, t)|2

(∫
Ω

|u(y, t)|2 + |v(y, t)|2dy
)p

,

∂

∂t
|v(x, t)|2 + i(v∆v̄ − v̄∆v) = 2β|v(x, t)|2

(∫
Ω

|u(y, t)|2 + |v(y, t)|2dy
)p

.

Integrating by parts and considering that
∫

Ω
|u(y, t)|2+|v(y, t)|2dy is a function

of t, we can derive

d

dt

∫
Ω

|u(x, t)|2dx = 2α

∫
Ω

|u(x, t)|2dx
(∫

Ω

|u(y, t)|2 + |v(y, t)|2dy
)p

,

d

dt

∫
Ω

|v(x, t)|2dx = 2β

∫
Ω

|v(x, t)|2dx
(∫

Ω

|u(y, t)|2 + |v(y, t)|2dy
)p

.

(2.1)



234 H. HUH

When α = β, we have from (2.1)

dx

dt
= 2αx1+p.(2.2)

When p = 0, we have x(t) = x(0)e2αt. For the case of p 6= 0, the ODE (2.2)
leads us to

xp(t) =
xp(0)

1− 2αpxp(0)t
.(2.3)

When q := −p > 0, (2.3) can be rewritten as

xq(t) = xq(0) + 2αqt.

As applications of (2.3), we can derive several behaviors of solutions like finite
time blow-up or extinction.

Corollary 2.1. (1) For p > 0 and α > 0, we have a finite blow-up x(t) → ∞
as t→ 1/2αpxp(0).

(2) For p > 0 and α < 0, we have x(t)→ 0 as t→∞.
(3) For q := −p > 0 and α > 0, we have x(t)→∞ as t→∞.
(4) For q := −p > 0 and α < 0, we have a finite time extinction [1], that is,

the solution may become identically zero after some positive time. In fact, we
can check x(t)→ 0 as t→ −xq(0)/2αq.

When β = −α, the equations (2.1) can be rewritten as

dx

dt
= 2αyxp,

dy

dt
= 2αx1+p.

(2.4)

From (2.4), we can derive

d

dt
(x2 − y2)(t) = 0.

Considering (x2 − y2)(t) = 4‖u(t)‖2L2‖v(t)‖2L2 , we have

4‖u(t)‖2L2‖v(t)‖2L2 = 4‖u0‖2L2‖v0‖2L2 := c2.

Then we obtain an ODE

dy

dt
= 2α(y2 + c2)

1+p
2 or

dx

dt
= ±2α

√
x2 − c2xp.

When p = 1 in the above equation, we have an explicit solution

y(t) = c
y(0) + c tan(2αct)

c− y(0) tan(2αct)
.
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3. Proof of Theorem 1.2 and its applications

In this section we assume that p is a nonnegative integer. For the equations
(1.2), we can derive

d

dt

∫
Ω

|u(x, t)|2dx = 2α

∫
Ω

|u(x, t)|2dx
(∫ t

0

∫
Ω

|u(y, s)|2 + |u(y, s)|2dy ds
)p

,

d

dt

∫
Ω

|v(x, t)|2dx = 2β

∫
Ω

|v(x, t)|2dx
(∫ t

0

∫
Ω

|u(y, s)|2 + |u(y, s)|2dy ds
)p

.

(3.1)

When α = β, we have

x′(t) = 2αx(t)

(∫ t

0

x(s)ds

)p
.(3.2)

Let X(t) =
∫ t

0
x(s)ds. Then (3.2) can be rewritten as

X ′′(t) = 2αXp(t)X ′(t) =

(
2α

p+ 1
Xp+1

)′
.

Considering X(0) =
∫ 0

0
x(s)ds = 0 and X ′(0) = x(0) = ‖u0‖2L2 + ‖v0‖2L2 , we

derive

X ′(t) =
2α

p+ 1
Xp+1(t) + x(0).(3.3)

As applications of the ODE (3.3), we consider the following two cases.
(i) For p > 0 and α > 0, we have finite time blow up.
(ii) For p = 1 and α = −p+1

2 , we have

X(t) =
√
x(0)

1− e1−2
√
x(0) t

1 + e1−2
√
x(0) t

which implies

x(t) = 4x(0)
e1−2
√
x(0) t

(1 + e1−2
√
x(0) t)2

,

from which we have x(t)→ 0 as t→∞.
When β = −α, we have from (3.1)

x′(t) = 2αy(t)

(∫ t

0

x(s)ds

)p
,

y′(t) = 2αx(t)

(∫ t

0

x(s)ds

)p
.

(3.4)

From (3.4), we derive d
dt (x

2 − y2) = 0 which implies x2 = y2 + c2, where

c2 = 4‖u0‖2L2‖v0‖2L2 . Plugging x =
√
y2 + c2 in the second equation of (3.4),



236 H. HUH

we obtain an ODE

dy

dt
= 2α

√
y2(t) + c2

(∫ t

0

√
y2(s) + c2 ds

)p
,(3.5)

which can be rewritten as

d

dt

(
y − 2α

p+ 1

(∫ t

0

√
y2(s) + c2 ds

)p+1
)

= 0.

Therefore we have

y(t) = y(0) +
2α

p+ 1

(∫ t

0

√
y2(s) + c2 ds

)p+1

.(3.6)

Let us show another look at (3.5). Let Y (t) =
∫ t

0

√
y2(s) + c2 ds. Then (3.5)

can be rewritten as

Y ′Y ′′

±
√

(Y ′)2 − c2
= 2αY ′Y p,(3.7)

where we use y2 = (Y ′)2 − c2 and ± corresponds the sign of y. From now on,
we consider the case y(t) ≥ 0. The equation (3.6) implies y(t) ≥ 0 for y(0) ≥ 0,
α ≥ 0. Then the equation (3.7) is equivalent to

d

dt

(√
(Y ′)2 − c2 − 2α

p+ 1
Y p+1

)
= 0.

Considering Y (0) = 0, Y ′(0) = ‖u0‖2L2 + ‖v0‖2L2 and c2 = 4‖u0‖2L2‖v0‖2L2 , we
obtain √

(Y ′)2 − c2 =
√
y2(0) +

2α

p+ 1
Y p+1,

where y(0) = ‖u0‖2L2 − ‖v0‖2L2 . Then we obtain an ODE

dY

dt
=

[
c2 +

(√
y2(0) +

2α

p+ 1
Y p+1

)2
] 1

2

.

In a similar way, we can derive an ODE for X(t). Plugging y = ±
√
x2 − c2

in the first equation of (3.4), we obtain an ODE

dx

dt
= ±2α

√
x2(t)− c2

(∫ t

0

x(s) ds

)p
.(3.8)

Let X(t) =
∫ t

0
x(s) ds. Then (3.8) can be rewritten as

X ′′ = ±2α
√

(X ′)2 − c2Xp.

Multiplying X ′ on both sides, we derive

X ′X ′′√
(X ′)2 − c2

= ±2αX ′Xp
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which is equivalent to d
dt

(√
(X ′)2 − c2 ∓ 2α

p+1X
p+1
)

= 0. Considering X(0) =

0, X ′(0) = ‖u0‖2L2 + ‖v0‖2L2 and c2 = 4‖u0‖2L2‖v0‖2L2 , we obtain√
(X ′)2 − c2 =

√
y2(0)± 2α

p+ 1
Xp+1.

Then we obtain an ODE dX
dt =

[
c2 +

(√
y2(0)± 2α

p+1X
p+1
)2
] 1

2

.

4. Proof of Theorem 1.3 and its applications

For the system (1.3), we can derive

d

dt

∫
R
|u(x, t)|2dx = 2α

∫
R

[
|u(x, t)|2

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p ]
dx,

d

dt

∫
R
|v(x, t)|2dx = 2β

∫
R

[
|v(x, t)|2

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p ]
dx.

(4.1)

Let us define f(x, t) =
∫ x
−∞ |u(y, t)|2 dy and g(x, t) =

∫ x
−∞ |v(y, t)|2 dy.

When α = β, the system (4.1) implies

d

dt

∫
R

(|u|2 + |v|2)(x, t)dx

= 2α

∫
R

[
(|u|2 + |v|2)(x, t)

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p ]
dx.

Taking into account

(|u|2 + |v|2)(x, t)

(∫ x

−∞
(|u|2 + |v|2)(y, t)dy

)p
=
d(f + g)

dx
(f + g)p =

d

dx

(
1

p+ 1
(f + g)p+1

)
,

we obtain∫ ∞
−∞

d

dx

(
1

p+ 1
(f + g)p+1

)
dx =

1

p+ 1

(∫ ∞
−∞

(|u|2 + |v|2)(y, t)dy

)p+1

.

Therefore we have

d

dt

∫
R

(|u|2 + |v|2)(x, t)dx =
2α

p+ 1

(∫
R
(|u|2 + |v|2)(x, t)dx

)p+1

,

which is the similar ODE to (2.2).
The system (4.1) can be rewritten as

d

dt
f(∞, t) = 2α

∫ ∞
−∞

∂f

∂x
(f + g)pdx,

d

dt
g(∞, t) = 2β

∫ ∞
−∞

∂g

∂x
(f + g)pdx.

(4.2)
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As an application of (4.2), we consider the case of α > 0, p > 0. Note that

f, g are nonnegative functions. Moreover we have ∂f
∂x ≥ 0 and ∂g

∂x ≥ 0. Then
the first equation of (4.2) implies

d

dt
f(∞, t) ≥ 2α

∫ ∞
−∞

∂f

∂x
fpdx =

2α

p+ 1
fp+1(∞, t),

where we note that f(∞, t) =
∫
R |u(x, t)|2 dx.
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