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Abstract. This paper is devoted to the study of a nonlinear Kirchhoff-Carrier wave

equation in an annulus associated with Robin-Dirichlet conditions. At first, by applying

the Faedo-Galerkin method, we prove existence and uniqueness results. Then, by con-

structing a Lyapunov functional, we prove a blow up result for solutions with a negative

initial energy and establish a sufficient condition to obtain the exponential decay of weak

solutions.

1. Introduction

In this paper, we consider the following nonlinear Kirchhoff-Carrier wave equa-
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tion on an annulus

utt − µ(t, u(1, t), ‖u(t)‖20 , ‖ux(t)‖20)(uxx +
1

x
ux) = f(x, t, u, ux, ut),(1.1)

0 < x < 1, 0 < t < T,

associated with Robin-Dirichlet conditions

(1.2) u(ρ, t) = ux(1, t) + ζu(1, t) = 0,

and initial conditions

(1.3) u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where µ, f, ũ0, ũ1 are given functions; and ρ ∈ (0, 1) and ζ ≥ 0 are given con-

stants. In Eq. (1.1), the nonlinear term µ(t, u(1, t), ‖u(t)‖20 , ‖ux(t)‖20) depends on

the integrals ‖u(t)‖20 =
∫ 1

ρ
xu2 (x, t) dx and ‖ux(t)‖20 =

∫ 1

ρ
xu2

x (x, t) dx.

Eq. (1.1) above is the bidimensional nonlinear wave equation describing non-
linear vibrations of the annular membrane Ω1 = {(x, y) : ρ2 < x2 + y2 < 1}.
In the vibration processing, the area of the annular membrane and the ten-
sion at various points change in time. The condition ux(1, t) + ζu(1, t) = 0 on
the boundary Γ1 = {(x, y) : x2 + y2 = 1} describes elastic constraints where
the constant ζ has a mechanical signification. With the boundary condition on
Γρ = {(x, y) : x2 + y2 = ρ2} requiring u(ρ, t) = 0, the annular membrane is fixed.

Eq. (1.1) has its origin in the nonlinear vibration of an elastic string (Kirchhoff
[6]), for which the associated equation is

(1.4) ρhutt =

(

P0 +
Eh

2L

∫ L

0

∣

∣

∣

∣

∂u

∂y
(y, t)

∣

∣

∣

∣

2

dy

)

uxx,

here u is the lateral deflection, L is the length of the string, h is the crosssectional
area, E is Young’s modulus, ρ is the mass density, and P0 is the initial tension.

In [3], Carrier established the equation which models vibrations of an elastic
string when changes in tension are not small

(1.5) ρutt −
(

1 +
EA

LT0

∫ L

0

u2(y, t)dy

)

uxx = 0,

where u(x, t) is the x-derivative of the deformation, T0 is the tension in the rest
position, E is the Young modulus, A is the cross-section of a string, L is the length
of the string and ρ is the density of the material. Clearly, if properties of a material
vary with x and t, then there is a hyperbolic equation of the type ([7])

(1.6) utt − µ

(

x, t,

∫ 1

0

u2 (y, t) dy

)

uxx = 0.
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The Kirchhoff-Carrier equations of the form Eq. (1.1) have received much at-
tention. We refer the reader to, e.g., [1], [2], [4], [5], [7], [8], [11] - [14], [19] - [21],
[23], [24] for many interesting results and further references. In these works, the re-
sults concerning local existence, global existence, asymptotic expansion, asymptotic
behavior, decay and blow-up of solutions have been examined.

In [14], Messaoudi established a blow-up result for solutions with negative ini-
tial energy and a global existence result for arbitrary initial data of a nonlinear
viscoelastic wave equation associated with initial and Dirichlet boundary condi-
tions.

In [11], [23], [24], the existence, regularity, blow-up, and exponential decay esti-
mates of solutions for nonlinear wave equations associated with two-point boundary
conditions have been established. The proofs are based on the Galerkin method as-
sociated to a priori estimates, weak convergence, and compactness techniques and
also by the construction of a suitable Lyapunov functional. The authors in [23],
[24] proved that any weak solution with negative initial energy will blow up in finite
time.

The paper consists of four sections. Preliminaries are done in Section 2, with
the notations, definitions, list of appropriate spaces and required lemmas. The main
results are presented in Sections 3 and 4.

In Sections 3, by combining the linearization method for nonlinear terms, the
Faedo-Galerkin method and the weak compact method, we prove that Prob. (1.1)
- (1.3) has a unique weak solution.

In Sections 4 and 5, Prob. (1.1) - (1.3) is considered in the case

(1.7) ζ = 0, f = −λut + f(u) + F (x, t),

with constant λ > 0. In Section 4, with F (x, t) ≡ 0 and a negative initial energy,
we prove that the solution of (1.1)-(1.3) and (1.7) blows up in finite time. In
Section 5, we give a sufficient condition, in which the initial energy is positive and
small, any the global weak solution is exponential decaying. In the proof, a suitable
Lyapunov functional is constructed. Our results can be regarded as an extension
and improvement of the corresponding results of [10], [11], [15] - [18], [23], [24].

2. Preliminaries

First, put Ω = (ρ, 1), QT = Ω × (0, T ), T > 0. We omit the definitions of
the usual function spaces and denote them by the notations Lp = Lp(Ω), Hm =
Hm (Ω) . Let (·, ·) be a scalar product in L2. The notation ‖·‖ stands for the norm
in L2 and we let ‖·‖X denote the norm in the Banach space X. We call X ′ the
dual space of X. We let Lp(0, T ;X), 1 ≤ p ≤ ∞ denote the Banach space of real
measurable functions u : (0, T ) → X such that ‖u‖Lp(0,T ;X) < +∞, with

‖u‖Lp(0,T ;X) =







(

∫ T

0 ‖u(t)‖pX dt
)1/p

, if 1 ≤ p < ∞,

ess sup
0<t<T

‖u(t)‖X , if p = ∞.
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With f ∈ Ck([ρ, 1] × R+ × R
3), f = f(x, t, y1, y2, y3), we put D1f = ∂f

∂x ,

D2f = ∂f
∂t , Di+2f = ∂f

∂yi
with i = 1, · · · , 3, and Dαf = Dα1

1 · · ·Dα5

5 f, α = (α1, · · · ,
α5) ∈ Z

5
+, |α| = α1 + · · ·+ α5 = k, D(0,··· ,0)f = f ;

With µ ∈ Ck([0, T ∗]×R×R
2
+), µ = µ(t, y1, y2, y3), we put D1µ = ∂µ

∂t , Di+1µ =
∂µ
∂yi

with i = 1, · · · , 3, and Dβµ = Dβ1

1 · · ·Dβ4

4 µ, β = (β1, · · · , β4) ∈ Z
4
+, |β| =

β1 + · · ·+ β4 = k, D(0,··· ,0)µ = µ.
On H1, H2, we shall use the following norms

(2.1) ‖v‖H1 =
(

‖v‖2 + ‖vx‖2
)

1
2

,

and

(2.2) ‖v‖H2 =
(

‖v‖2 + ‖vx‖2 + ‖vxx‖2
)

1
2

,

respectively.
We remark that L2, H1, H2 are the Hilbert spaces with respect to the corre-

sponding scalar products

(2.3) 〈u, v〉 =
∫ 1

ρ

xu (x) v (x) dx, 〈u, v〉+ 〈ux, vx〉, 〈u, v〉+ 〈ux, vx〉+ 〈uxx, vxx〉.

The norms in L2, H1 and H2 induced by the corresponding scalar products
(2.3) are denoted by ‖·‖0 , ‖·‖1 and ‖·‖2 .

Consider the set

(2.4) V =
{

v ∈ H1 : v (ρ) = 0
}

.

It is obvious that V is a closed subspace of H1 and on V two norms ‖v‖H1

and ‖vx‖ are equivalent norms. On the other hand, V is continuously and densely

embedded in L2. Identifying L2 with
(

L2
)′
(the dual of L2), we have V →֒ L2 →֒ V ′.

We note more that the notation 〈·, ·〉 is also used for the pairing between V and V ′.
We then have the following lemmas, the proofs of which can be found in the

paper [17].

Lemma 2.1. The following inequalities are fulfilled

(i)
√
ρ ‖v‖ ≤ ‖v‖0 ≤ ‖v‖ for all v ∈ L2,

(ii)
√
ρ ‖v‖H1 ≤ ‖v‖1 ≤ ‖v‖H1 for all v ∈ H1.

Lemma 2.2. The embedding V →֒ C0
(

Ω
)

is compact and for all v ∈ V, we have

(i) ‖v‖C0(Ω) ≤
√
1− ρ ‖vx‖ ,

(ii) ‖v‖ ≤ 1−ρ√
2
‖vx‖ ,

(iii) ‖v‖0 ≤ 1−ρ√
2ρ

‖vx‖0 ,
(iv) ‖vx‖20 + v2 (1) ≥ ‖v‖20 ,
(v) |v (1)| ≤

√
3 ‖v‖1 .
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Remark 2.3. On L2, two norms v 7→ ‖v‖ and v 7→ ‖v‖0 are equivalent. So are
two norms v 7→ ‖v‖H1 and v 7→ ‖v‖1 on H1, and five norms v 7→ ‖v‖H1 , v 7→ ‖v‖1 ,
v 7→ ‖vx‖ , v 7→ ‖vx‖0 and v 7→

√

‖vx‖20 + v2 (1) on V.

Lemma 2.4. We have

(2.5) ‖v‖C0(Ω) ≤ α0 ‖v‖H1 for all v ∈ H1,

where α0 =

√

1+
√

1+16(1−ρ)2

2(1−ρ) .

Proof. Since C1
(

Ω
)

is dense in H1, we only show that (2.5) holds for all v ∈ C1
(

Ω
)

.

For all v ∈ C1
(

Ω
)

, and x, y ∈ Ω, we have

v2 (x) = v2 (y) + 2

∫ x

y

v (z) vx (z)dz.

Integrating over y from ρ to 1 to get

(1− ρ) v2 (x) = ‖v‖2 + 2

∫ 1

ρ

dy

∫ x

y

v (z) vx (z) dz

= ‖v‖2 + 2

∫ 1

ρ

dy

∫ x

ρ

v (z) vx (z) dz − 2

∫ 1

ρ

dy

∫ y

ρ

v (z) vx (z) dz

≤ ‖v‖2 + 2 (1− ρ)

∫ x

ρ

|v (z) vx (z)| dz

+ 2

∫ 1

ρ

(1− z) |v (z) vx (z)| dz

≤ ‖v‖2 + 4 (1− ρ)

∫ 1

ρ

|v (z) vx (z)| dz.(2.6)

Note that α2
0 =

1+
√

1+16(1−ρ)2

2(1−ρ) satisfies 1 + 4 (1− ρ) 1
α2

0

= (1− ρ)α2
0, applying

the inequality 2ab ≤ 2

α2
0

a2 +
α2

0

2 b2, for all a, b ∈ R, we deduce from (2.6), that

(1− ρ) v2 (x) ≤ ‖v‖2 + 2 (1− ρ)

(

2

α2
0

‖v‖2 + α2
0

2
‖vx‖2

)

=

(

1 +
4 (1− ρ)

α2
0

)

‖v‖2 + (1− ρ)α2
0 ‖vx‖2

= (1− ρ)α2
0 ‖v‖

2
H1 .

Hence (2.5) holds. Lemma 2.4 is complete. �
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Now, we define the following bilinear form

(2.7) a (u, v) = ζu (1) v (1) +

∫ 1

ρ

xux (x) vx (x) dx, for all u, v ∈ V,

where ζ ≥ 0 is a constant.

Lemma 2.5. The symmetric bilinear form a (·, ·) defined by (2.7) is continuous on
V × V and coercive on V, i.e.,

(i) |a (u, v)| ≤ C1 ‖u‖1 ‖v‖1 ,
(ii) a (v, v) ≥ C0 ‖v‖21 ,

for all u, v ∈ V, where C0 = 1
2 min{1, 2ρ

(1−ρ)2
} and C1 = 1 + 3ζ.

Lemma 2.6. There exists the Hilbert orthonormal base {wj} of the space L2

consisting of eigenfunctions wj corresponding to eigenvalues λj such that

(i) 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ λj+1 ≤ · · · , limj→+∞ λj = +∞,

(ii) a (wj , v) = λj 〈wj , v〉 for all v ∈ V, j = 1, 2, · · · .
Furthermore, the sequence {wj/

√

λj} is also the Hilbert orthonormal base of
V with respect to the scalar product a (·, ·) .

On the other hand, we also have wj satisfying the following boundary value
problem

(2.8)

{

Awj ≡ −
(

wjxx + 1
xwjx

)

= − 1
x

∂
∂x (xwjx) = λjwj , in Ω,

wj (ρ) = wjx(1) + ζwj(1) = 0, wj ∈ C∞ ([ρ, 1]) .

The proof of Lemma 2.5 can be found in [[22], p.87, Theorem 7.7], with H = L2,
and a(·, ·) as defined by (2.7). �

We also note that the operator A : V −→ V ′ in (2.8) is uniquely defined by the
Lax-Milgram Lemma, i.e.,

(2.9) a (u, v) = 〈Au, v〉 for all u, v ∈ V.

Lemma 2.7. On V ∩H2, three norms v 7→ ‖v‖H2 ,

v 7→ ‖v‖2 =
√

‖v‖20 + ‖vx‖20 + ‖vxx‖20 and v 7→ ‖v‖2∗ =
√

‖vx‖20 + ‖Av‖20 are equiv-

alent.
The proof of Lemma 2.7 can be found in [17].

Remark 2.8. The weak formulation of the initial-boundary value problem (1.1)-
(1.3) can be given in the following manner: Find u ∈ W̄T = {u ∈ L∞(0, T ;V ∩H2) :
u′ ∈ L∞(0, T ;V ), u′′ ∈ L∞(0, T ;L2)}, such that u satisfies the following variational
equation

(2.10) 〈u′′(t), v〉+ µ[u] (t) a(u(t), v) = 〈f [u] (t) , v〉 ,
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for all v ∈ V, a.e., t ∈ (0, T ), together with the initial conditions

(2.11) u(0) = ũ0, u′(0) = ũ1,

where a(·, ·) is the symmetric bilinear form on V defined by (2.7) and

µ[u] (t) = µ(t, u(1, t), ‖u(t)‖20 , ‖ux(t)‖20),(2.12)

f [u](x, t) = f (x, t, u(x, t), ux(x, t), u
′(x, t)) .

3. The Existence and Uniqueness Theorem

Now, let T ∗ > 0. We shall consider Prob. (1.1)-(1.3 ) with the constant ζ ≥ 0
and make the following assumptions.

(H1) ũ0 ∈ V ∩H2, ũ1 ∈ V ;

(H2) µ ∈ C1
(

[0, T ∗]× R× R
2
+

)

and there exists the constant µ∗ > 0

such that µ(t, y1, y2, y3) ≥ µ∗ > 0, ∀(t, y1, y2, y3) ∈ [0, T ∗]× R× R
2
+;

(H3) f ∈ C0
(

Ω̄× [0, T ∗]× R
3
)

such that

f(ρ, t, 0, y2, 0) = 0, ∀(t, y2) ∈ [0, T ∗]× R

and Dif ∈ C0
(

Ω̄× [0, T ∗]× R
3
)

, i = 1, 3, 4, 5.

Let M > 0, we put

K̃M (µ) = sup
(t,y1,y2,y3)∈Ã∗(M)

(

µ(t, y1, y2, y3) +
∑4

i=1
|Diµ(t, y1, y2, y3)|

)

,

KM (f) = ‖f‖C0(A∗(M)) + ‖D1f‖C0(A∗(M)) +
∑

3≤i≤5

‖Dif‖C0(A∗(M)) ,

‖f‖C0(A∗(M)) = sup {|f (x, t, y1, y2, y3)| : (x, t, y1, y2, y3) ∈ A∗ (M)} ,

where

Ã∗ (M) =

{

(t, y1, y2, y3) ∈ [0, T ∗]× R× R
2
+ : |y1| ≤

√

1− ρ

ρ
M, 0 ≤ yi ≤ M2, i = 2, 3

}

,

A∗ (M) =

{

(x, t, y1, y2, y3) ∈ Ω̄× [0, T ∗]× R
3 : |y2| ≤ α0M, |yi| ≤

√

1− ρ

ρ
M, i = 1, 3

}

.

Also for each M > 0 and T ∈ (0, T ∗], we set

W (M,T ) = {v ∈ L∞ (0, T ;V ∩H2
)

: v′ ∈ L∞ (0, T ;V ) ,

v′′ ∈ L2 (QT ) , ‖v‖T ≤ M},
W1 (M,T ) = {v ∈ W (M,T ) : v′′ ∈ L∞ (0, T ;L2

)

},
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where ‖v‖T = max{‖v‖L∞(0,T ;V ∩H2) , ‖v′‖L∞(0,T ;V ) , ‖v′′‖L2(QT )}.
We choose the first term u0 ≡ 0. Suppose that

(3.1) um−1 ∈ W1(M,T ),

and associate with Prob. (1.1)-(1.3) the following variational problem: Find um ∈
W1 (M,T ) (m ≥ 1) so that

(3.2)

{

〈u′′
m(t), v〉 + µm (t) a(um(t), v) = 〈Fm (t) , v〉 , ∀v ∈ V,

um(0) = ũ0, u′
m(0) = ũ1,

where

µm (t) = µ[um−1](t) = µ(t, um−1(1, t), ‖um−1(t)‖20 , ‖∇um−1(t)‖20),(3.3)

Fm(x, t) = f [um−1](x, t) = f
(

x, t, um−1(x, t),▽um−1(x, t), u
′
m−1(x, t)

)

.

Then we have the following result.
Theorem 3.1. Let the assumptions (H1) − (H3) hold. Then there exist positive
constants M, T such that the problem (3.2), (3.3) has a solution um ∈ W1(M,T ).

Proof. The proof is similar to the arguments in [17]. It consists of three steps.
Step 1. The Faedo-Galerkin approximation (introduced by Lions [9]). Consider
the basis {wj} for V as in Lemma 2.5. Put

(3.4) u(k)
m (t) =

∑k

j=1
c
(k)
mj(t)wj ,

where the coefficients c
(k)
mj satisfy the system of linear differential equations

(3.5)







〈

ü
(k)
m (t), wj

〉

+ µm (t) a(u
(k)
m (t), wj) = 〈Fm (t) , wj〉 ,

u
(k)
m (0) = u0k, u̇

(k)
m (0) = u1k, j = 1, · · · , k,

with

(3.6)

{

u0k =
∑k

j=1 α
(k)
j wj → ũ0 strongly in V ∩H2,

u1k =
∑k

j=1 β
(k)
j wj → ũ1 strongly in V.

The system of the equations (3.5) can be rewritten in form

(3.7)

{

c̈
(k)
mj(t) + λjµm(t)c

(k)
mj(t) = Fmj(t),

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k,

in which

(3.8) Fmj(t) = 〈Fm(t), wj〉, 1 ≤ j ≤ k.
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Note that by (3.1), it is not difficult to prove that the system (3.7), (3.8) has a

unique solution c
(k)
mj(t), 1 ≤ j ≤ k on interval [0, T ], so let us omit the details.

Step 2. A priori estimates. We put

S(k)
m (t) =

∥

∥

∥
u̇(k)
m (t)

∥

∥

∥

2

0
+
∥

∥

∥
u̇(k)
m (t)

∥

∥

∥

2

a
+ µm (t)

(

∥

∥

∥
u(k)
m (t)

∥

∥

∥

2

a
+
∥

∥

∥
Au(k)

m (t)
∥

∥

∥

2

0

)

+

∫ t

0

∥

∥

∥
ü(k)
m (s)

∥

∥

∥

2

0
ds,(3.9)

where we denote ‖v‖a =
√

a(v, v), ∀v ∈ V.
Then, it follows from (3.5), (3.9), that

S(k)
m (t) = S(k)

m (0) +

∫ t

0

µ′
m (s)

[

∥

∥

∥
u(k)
m (s)

∥

∥

∥

2

a
+
∥

∥

∥
Au(k)

m (s)
∥

∥

∥

2

0

]

ds(3.10)

+ 2

∫ t

0

〈

Fm (s) , u̇(k)
m (s)

〉

ds+ 2

∫ t

0

a
(

Fm(s), u̇(k)
m (s)

)

ds

+

∫ t

0

∥

∥

∥
ü(k)
m (s)

∥

∥

∥

2

0
ds ≡ S(k)

m (0) +
∑4

j=1
Ij .

We shall estimate the terms Ij on the right-hand side of (3.10) as follows.

First term I1. It is known that

µ′
m (t) = D1µ[um−1](t)

+ D2µ[um−1](t)u
′
m−1(1, t) + 2D3µ[um−1](t)〈um−1(t), u

′
m−1(t)〉

+ 2D4µ[um−1](t)〈∇um−1(t),∇u′
m−1(t)〉,

with Diµ[um−1](t) = Diµ(t, um−1(1, t), ‖um−1(t)‖20 , ‖∇um−1(t)‖20), i = 1, · · · , 4, it
implies from (3.1) that

∣

∣µ
′

m (t)
∣

∣(3.11)

≤ K̃M (µ)
[

1 +
∣

∣u
′

m−1(1, t)
∣

∣+ 2 ‖um−1(t)‖0
∥

∥u
′

m−1(t)
∥

∥

0
+ 2 ‖∇um−1(t)‖0

∥

∥∇u
′

m−1(t)
∥

∥

0

]

≤ K̃M (µ)

[

1 +

√

1− ρ

ρ
M + 4M2

]

≡ qM K̃M (µ) ,

where qM = 1 +

√

1− ρ

ρ
M + 4M2.

By the following inequality

S(k)
m (t) ≥ µm (t)

[

∥

∥

∥
u(k)
m (t)

∥

∥

∥

2

a
+
∥

∥

∥
Au(k)

m (t)
∥

∥

∥

2

0

]

≥ µ∗

[

∥

∥

∥
u(k)
m (t)

∥

∥

∥

2

a
+
∥

∥

∥
Au(k)

m (t)
∥

∥

∥

2

0

]

,

we have
(3.12)

I1 =

∫ t

0

µ′
m (s)

[

∥

∥

∥
u(k)
m (s)

∥

∥

∥

2

a
+
∥

∥

∥
Au(k)

m (s)
∥

∥

∥

2

0

]

ds ≤ 1

µ∗
qMK̃M (µ)

∫ t

0

S(k)
m (s)ds.
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Second term I2. By the Cauchy-Schwartz inequality, we have

(3.13) |I2| = 2

∣

∣

∣

∣

∫ t

0

〈

Fm (s) , u̇(k)
m (s)

〉

ds

∣

∣

∣

∣

≤ 1− ρ2

2
TK2

M (f) +

∫ t

0

S(k)
m (s)ds.

Third term I3. Similarly, we have

(3.14) |I3| = 2

∣

∣

∣

∣

∫ t

0

a
(

Fm(s), u̇(k)
m (s)

)

ds

∣

∣

∣

∣

≤
∫ t

0

‖Fm(s)‖2a ds+
∫ t

0

S(k)
m (s)ds.

Note that

‖v‖2a ≤ C1 ‖v‖21 ≤ C1

(

(1 − ρ)2

2ρ
‖vx‖20 + ‖vx‖20

)

(3.15)

= C1
(1 + ρ2)

2ρ
‖vx‖20 for all v ∈ V,

so

(3.16) ‖Fm(s)‖2a ≤ C1
(1 + ρ2)

2ρ
‖Fmx(s)‖20 .

We also have

Fmx(t) = D1f [um−1] +D3f [um−1]▽um−1(t)(3.17)

+D4f [um−1]∆um−1(t) +D5f [um−1]▽u
′
m−1(t),

where Dif [um−1] = Dif
(

x, t, um−1(t),▽um−1(t), u
′
m−1(t)

)

, i = 1, · · · , 5.
From (3.1) and (3.17) we get

(3.18) ‖Fmx(t)‖0 ≤
(
√

1− ρ2

2
+ 3M

)

KM (f) .

Combining (3.14), (3.16) and (3.18), we obtain

(3.19) |I3| ≤ C1
(1 + ρ2)

2ρ

(
√

1− ρ2

2
+ 3M

)2

TK2
M (f) +

∫ t

0

S(k)
m (s)ds.

Fourth term I4. Eq. (3.5)1 can be rewritten as follows

(3.20)
〈

ü(k)
m (t), wj

〉

+ µm (t)
〈

Au(k)
m (t), wj

〉

= 〈Fm (t) , wj〉 , j = 1, · · · , k.

Hence, it follows after replacing wj with ü
(k)
m (t), that

∥

∥

∥
ü(k)
m (t)

∥

∥

∥

2

0
= −µm (t)

〈

Au(k)
m (t), ü(k)

m (t)
〉

+
〈

Fm (t) , ü(k)
m (t)

〉

(3.21)

≤
[

µm (t)
∥

∥

∥
Au(k)

m (t)
∥

∥

∥

0
+ ‖Fm (t)‖0

] ∥

∥

∥
ü(k)
m (t)

∥

∥

∥

0

≤ 2µ2
m (t)

∥

∥

∥
Au(k)

m (t)
∥

∥

∥

2

0
+ 2 ‖Fm (t)‖20

≤ 2K̃M (µ)S(k)
m (t) +

(

1− ρ2
)

K2
M (f) .
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Integrating in t to get

(3.22) I4 =

∫ t

0

∥

∥

∥
ü(k)
m (s)

∥

∥

∥

2

0
ds ≤ (1− ρ2)TK2

M (f) + 2K̃M (µ)

∫ t

0

S(k)
m (s)ds.

The term S
(k)
m (0). By means of the convergences in (3.6), we can deduce the

existence of a constant M > 0 independent of k and m such that
(3.23)

S(k)
m (0) = ‖u1k‖20+‖u1k‖2a+µ(0, ũ0(1), ‖ũ0‖20 , ‖ũ0x‖20)

[

‖u0k‖2a + ‖Au0k‖20
]

≤ 1

2
M2,

for all m, k ∈ N

It follows from (3.10), (3.12), (3.13), (3.19), (3.22) and (3.23), that

(3.24) S(k)
m (t) ≤ 1

2
M2 + TD1(M) +D2(M)

∫ t

0

S(k)
m (s)ds,

where

(3.25)



















D1(M) =





3

2
(1− ρ2) + C1

(1+ρ2)
2ρ

(

√

1− ρ2

2
+ 3M

)2


K2
M (f) ,

D2(M) = 2
[

1 +
(

1 + 1
2µ∗

qM

)

K̃M (µ)
]

.

Therefore, we can choose T ∈ (0, T ∗], such that

(3.26)

(

1

2
M2 + TD1(M)

)

exp (TD2(M)) ≤ M2,

and

(3.27) kT =

(

1 +
1√
µ∗C0

)√
q̄M

√
T exp

[

T

(

1 +
qM K̃M (µ)

2µ∗

)]

< 1,

where

(3.28) q̄M =

(
√

1− ρ

ρ
+ 2M

)2

M2K̃2
M (µ) +K2

M (f)

(

1 +
1− ρ√

2ρ

)2

.

Finally, it follows from (3.24) and (3.26) that

(3.29) S(k)
m (t) ≤ M2 exp (−TD2(M)) +D2(M)

∫ t

0

S(k)
m (s)ds.

Using Gronwall’s Lemma, (3.29) yields

(3.30) S(k)
m (t) ≤ M2 exp (−TD2(M)) exp (tD2(M)) ≤ M2,
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for all t ∈ [0, T ], for all m and k. Therefore, we have

(3.31) u(k)
m ∈ W (M,T ), for all m and k ∈ N.

Step 3. Limiting process. From (3.31), there exists a subsequence of {u(k)
m }, still

so denoted, such that

(3.32)



















u
(k)
m → um in L∞(0, T ;V ∩H2) weakly*,

u̇
(k)
m → u′

m in L∞(0, T ;V ) weakly*,

ü
(k)
m → u′′

m in L2(QT ) weakly,
um ∈ W (M,T ).

Passing to the limit in (3.5), we have um satisfying (3.2), (3.3) in L2(0, T ). On
the other hand, it follows from (3.2)1 and (3.32)4 that u′′

m = −µm (t)Aum + Fm ∈
L∞(0, T ;L2), hence um ∈ W1(M,T ) and the proof of Theorem 3.1 is complete. �

In order to get the existence and uniqueness, we introduce the Banach space
(see [9])

W1(T ) = {v ∈ L∞(0, T ;V ) : v′ ∈ L∞(0, T ;L2)},
with respect to the norm ‖v‖W1(T ) = ‖v‖L∞(0,T ;V ) + ‖v′‖L∞(0,T ;L2) . �

By the result given in Theorem 3.1 and by the compact imbedding theorems,
we prove the main results in this section as follows

Theorem 3.2. Let (H1) − (H3) hold. Then, there exist positive constants M, T
satisfying (3.23), (3.26)-(3.28) such that Prob. (1.1)-(1.3) has a unique weak solution
u ∈ W1(M,T ). Furthermore, the linear recurrent sequence {um} defined by (3.2),
(3.3) converges to the solution u strongly in the space W1(T ) with the estimate

(3.33) ‖um − u‖W1(T ) ≤
M

1− kT
kmT , for all m ∈ N.

Proof.
(a) The existence. First, we shall prove that {um} is a Cauchy sequence in W1(T ).
Let wm = um+1 − um. Then wm satisfies the variational problem

(3.34)











〈w′′
m(t), v〉+ µm+1 (t) a(wm(t), v) + [µm+1 (t)− µm (t)] 〈Aum(t), v〉

= 〈Fm+1(t)− Fm(t), v〉 , ∀v ∈ V,

wm(0) = w′
m(0) = 0.

Taking v = w′
m in (3.34)1, after integrating in t, we get

Zm(t) =

∫ t

0

µ′
m+1 (s) ‖wm(s)‖2a ds− 2

∫ t

0

[µm+1 (s)− µm (s)] 〈Aum(s), w′
m(s)〉ds

+2

∫ t

0

〈Fm+1(s)− Fm(s), w′
m(s)〉 ds

≡ J1 + J2 + J3,(3.35)
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where

(3.36) Zm(t) = ‖w′
m(t)‖20 + µm+1 (t) ‖wm(t)‖2a ≥ ‖w′

m(t)‖20 + µ∗C0 ‖wm(t)‖21 .

All integrals on the right – hand side of (3.35) will be estimated as below.
First integral J1. By (3.11) and (3.36), we have

(3.37) |J1| ≤
∫ t

0

∣

∣µ′
m+1 (s)

∣

∣ ‖wm(s)‖2a ds ≤
1

µ∗
qM K̃M (µ)

∫ t

0

Zm(s)ds.

Second integral J2. By (H2), it is clear to see that

|µm+1(t)− µm(t)|(3.38)

≤ K̃M (µ)
[

|wm−1(1, t)|+
∣

∣‖um(t)‖20 − ‖um−1(t)‖20
∣

∣+
∣

∣‖∇um(t)‖20 − ‖∇um−1(t)‖20
∣

∣

]

≤
(
√

1− ρ

ρ
+ 2M

)

K̃M (µ) ‖wm−1‖W1(T ) .

Hence

|J2| = 2

∣

∣

∣

∣

∫ t

0

[µm+1 (s)− µm (s)] 〈Aum(s), w′
m(s)〉ds

∣

∣

∣

∣

≤ T

(
√

1− ρ

ρ
+ 2M

)2

M2K̃2
M (µ) ‖wm−1‖2W1(T ) +

∫ t

0

Zm(s)ds.(3.39)

Third integral J3. By (H3) it yields

‖Fm+1(t)− Fm(t)‖0 ≤ KM (f)
(

‖wm−1(t)‖0 + ‖∇wm−1(t)‖0 +
∥

∥w
′

m−1(t)
∥

∥

0

)

≤ KM (f)

(

1− ρ√
2ρ

‖∇wm−1(t)‖0 + ‖∇wm−1(t)‖0 +
∥

∥w
′

m−1(t)
∥

∥

0

)

≤ KM (f)

(

1 +
1− ρ√

2ρ

)

‖wm−1‖W1(T ) .(3.40)

Hence

|J3| = 2

∣

∣

∣

∣

∫ t

0

〈Fm+1(s)− Fm(s), w′
m(s)〉 ds

∣

∣

∣

∣

(3.41)

≤ T ∗K2
M (f)

(

1 +
1− ρ√

2ρ

)2

‖wm−1‖2W1(T ) +

∫ t

0

Zm(s)ds.

Combining (3.35), (3.37), (3.39) and (3.41), we obtain

(3.42) Zm(t) ≤ q̄MT ‖wm−1‖2W1(T ) + 2

(

1 +
qM K̃M (µ)

2µ∗

)

∫ t

0

Zm(s)ds,
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where q̄M as in (3.28). Using Gronwall’s Lemma, we deduce from (3.42) that

(3.43) ‖wm‖W1(T ) ≤ kT ‖wm−1‖W1(T ) ∀m ∈ N,

where kT as in (3.27). It implies that

‖um − um+p‖W1(T ) ≤ ‖u0 − u1‖W1(T ) (1− kT∗)−1kmT(3.44)

≤ M

1− kT
kmT ∀m, p ∈ N.

It follows that {um} is a Cauchy sequence in W1(T ). Then there exists u ∈
W1(T ) such that

(3.45) um → u strongly in W1(T ).

Note that um ∈ W1(M,T ), then there exists a subsequence {umj
} of {um} such

that

(3.46)















umj
→ u in L∞(0, T ;V ∩H2) weakly*,

u′
mj

→ u′ in L∞(0, T ;V ) weakly*,

u′′
mj

→ u′′ in L2(QT ) weakly,

u ∈ W (M,T ).

We also note that
(3.47)

‖Fm(t)− f(·, t, u, ux, u
′)‖L∞(0,T ;L2) ≤ KM (f)

(

1 +
1− ρ√

2ρ

)

‖um−1 − u‖W1(T ) .

Hence, from (3.45) and (3.47), we obtain

(3.48) Fm(t) → f(·, t, u, ux, u
′) strongly in L∞(0, T ;L2).

On the other hand, we have

(3.49) |µm(t)− µ[u](t)| ≤
(
√

1− ρ

ρ
+ 2M

)

K̃M (µ) ‖um−1 − u‖W1(T ) .

Hence, it follows from (3.45) and (3.49) that

(3.50) µm → µ[u] strongly in L∞(0, T ).

Finally, passing to limit in (3.2), (3.3) as m = mj → ∞, it implies from (3.45),
(3.46)1,3 (3.48) and (3.50) that there exists u ∈ W (M,T ) satisfying the equation

(3.51) 〈u′′(t), v〉 + µ[u](t)a(u(t), v) = 〈f [u](t), v〉 ,

for all v ∈ V and the initial conditions

(3.52) u(0) = ũ0, u′(0) = ũ1.
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Furthermore, from the assumptions (H2), (H3) we obtain from (3.46)4, (3.48),
(3.50) and (3.51), that

(3.53) u′′ = −µ[u](t)Au(t) + f [u](t) ∈ L∞(0, T ;L2),

thus we have u ∈ W1(M,T ). The existence of a weak solution of Prob. (1.1) - (1.3)
is proved.

(b) The uniqueness. Let u1, u2 ∈ W1(M,T ) be two weak solutions of Prob. (1.1)
- (1.3). Then u = u1 − u2 satisfies the variational problem

(3.54)











〈u′′(t), v〉+ µ1 (t) a(u(t), v) + [µ1 (t)− µ2 (t)] 〈Au2(t), v〉
= 〈F1(t)− F2(t), v〉 , ∀v ∈ V,

u(0) = u′(0) = 0,

where Fi(x, t) = f (x, t, ui, uix, u
′
i) , µi (t) = µ[ui](t), i = 1, 2. We take w = u′ in

(3.54)1 and integrate in t to get

Z(t) ≤ K∗
M

∫ t

0

Z(s)ds, for all t ∈ [0, T ],

where

Z(t) = ‖u′(t)‖20 + µ1 (t) ‖u(t)‖2a ,

K∗
M = 2

(

1 +
1− ρ√

2ρ

)(

1 +
1√
µ∗

)

KM (f)

+

[

qM
µ∗

+ 2

(
√

1− ρ

ρ
+ 2M

)

M√
C0µ∗

]

K̃M (µ) .

Using Gronwall’s Lemma, it follows that Z = u1 − u2 ≡ 0. Therefore, Theorem 3.2
is proved. �

4. Blow Up Result

In this section, Prob. (1.1) – (1.3) is considered with ζ = 0, f(x, t, u, ux, ut) =
−λut + f(u) + F (x, t), as follows

(4.1)























utt − µ
(

‖ux(t)‖20
)

(uxx + 1
xux) + λut = f(u) + F (x, t),

ρ < x < 1, 0 < t < T,

u(ρ, t) = ux(1, t) = 0,

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where λ > 0, 0 < ρ < 1 are given constants and ũ0, ũ1, µ, f, F are given functions
satisfying conditions specified later.
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In this section, we assume that

(H∗
2 ) µ ∈ C1 (R) and there exists the constant µ∗ > 0 such that

µ(y) ≥ µ∗ > 0, ∀y ∈ R;

(H∗
3 ) f ∈ C1(R), f(0) = 0;

(H∗
4 ) F, F ′ ∈ L2(Ω× (0, T ∗)).

Then we obtain the following theorem about the existence of a weak solution.

Theorem 4.1. Suppose that (H1), (H
∗
2 ) − (H∗

4 ) hold. Then Prob. (4.1) has a
unique local solution

u ∈ C ([0, T ];V ) ∩ C1
(

[0, T ];L2
)

∩ L∞ (0, T ;V ∩H2
)

,(4.2)

u′ ∈ L∞ (0, T ;V ) , u′′ ∈ L∞ (0, T ;L2
)

,

for T > 0 small enough.

Proof. The proof is similar to those of Theorem 3.1 and Theorem 3.2. �

First, in order to obtain a blow up result, we make the following assumptions.

(Ĥ∗
2 ) µ ∈ C1 (R+) , and there exist the constants µ∗ > 0, µ̄1 > 0

such that
(i) µ(y) ≥ µ∗ > 0, ∀y ≥ 0,

(ii) yµ(y) ≤ µ̄1

∫ y

0
µ(z)dz, ∀y ≥ 0;

(Ĥ∗
3 ) f ∈ C1(R), f(0) = 0 and there exist the constants p > 2,

d1 > 2, d̄1 > 0 such that

(i) yf(y) ≥ d1
∫ y

0 f(z)dz, ∀y ∈ R,

(ii)
∫ y

0 f(z)dz ≥ d̄1 |y|p , ∀y ∈ R;

(Ĥ∗
4 ) F (x, t) ≡ 0;

(Ĥ∗
5 ) d1 > 2µ̄1, with d1, µ̄1 as in (Ĥ∗

2 )(ii), (Ĥ
∗
3 )(i).

We present an example of the functions µ, f satisfying (Ĥ∗
2 ), (Ĥ

∗
3 ), (Ĥ

∗
5 ) as

below

µ(y) = µ∗ + yq, ∀y ≥ 0,(4.3)

f(u) = d |u|p−2
u lnn(e+ u2),

where µ∗ > 0, d > 0, q > 1, p > 2q + 2, n > 1 are constants.
It is obvious that µ ∈ C1 (R+) and (Ĥ∗

2 )(i) holds.
Moreover
∫ y

0

µ(z)dz = µ∗y +
yq+1

q + 1
≥ 1

q + 1

(

µ∗y + yq+1
)

=
1

q + 1
yµ (y) , ∀y ≥ 0.

Hence, (Ĥ∗
2 )(ii) holds with µ̄1 = q + 1.
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With the function f, it is clearly that f ∈ C1 (R) , f (0) = 0.
Using integration by parts, it gives

(4.4)

∫ y

0

f(z)dz =
1

p
yf(y)− 2nd

p

∫ y

0

|z|p z
e+ z2

lnn−1(e + z2)dz.

Note that

∫ y

0

|z|p z
e+ z2

lnn−1(e+ z2)dz ≥ 0, ∀y ∈ R, so we obtain

(4.5) yf(y) ≥ p

∫ y

0

f(z)dz, ∀y ∈ R.

Hence, (Ĥ∗
3 )(i) holds, with d1 = p.

With the condition (Ĥ∗
3 )(ii) :

Note that the function f̄(y) =
∫ y

0 f(z)dz = d
∫ y

0 |z|p−2
z lnn(e+ z2)dz satisfies

(4.6) f̄(−y) = f̄(y) ≥ 0, ∀y ∈ R.

Let y ≥ 0, by lnn(e+ z2) ≥ 1, ∀z ∈ [0, y], we have

(4.7) f̄(y) =

∫ y

0

f(z)dz = d

∫ y

0

|z|p−2
z lnn(e+ z2)dz ≥ d

∫ y

0

|z|p−2
zdz =

d

p
|y|p .

By (4.6), we have

(4.8) f̄(y) =

∫ y

0

f(z)dz ≥ d

p
|y|p , ∀y ∈ R.

Hence, (Ĥ∗
3 )(ii) holds, with d̄1 =

d

p
.

It is obvious that (Ĥ∗
5 ) holds, because d1 − 2µ̄1 = p− 2q − 2 > 0.

Put

(4.9) H(0) = −1

2
‖ũ1‖20 −

1

2

∫ ‖ũ0x‖2

0

0

µ(z)dz +

∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz.

Theorem 4.2. Let (Ĥ∗
2 )− (Ĥ∗

5 ) hold. Then, for any (ũ0, ũ1) ∈ (V ∩H2)×V such
that H(0) > 0, the weak solution u = u(x, t) of Prob. (4.1) blows up in finite time.

Proof. It consists of two steps, in which, the Lyapunov functional L(t) is constructed
in step 1 and then the blow up is proved in step 2.
Step 1. We define the energy associated with (4.1) by

(4.10) E(t) =
1

2
‖u′(t)‖20 +

1

2

∫ ‖ux(t)‖2
0

0

µ(z)dz −
∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz,
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and we put H(t) = −E(t), ∀t ∈ [0, T ∗). Multiplying (4.1)1 by xu′(x, t) and inte-
grating the resulting equation over [ρ, 1], we have

(4.11) H ′(t) = λ ‖u′(t)‖20 ≥ 0.

Hence, we can deduce from (4.11) and H(0) > 0 that

(4.12) H(t) ≥ H(0) > 0, ∀t ∈ [0, T ),

so

(4.13)



























0 < H(0) ≤ H(t) ≤
∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz;

‖u′(t)‖20 +
∫ ‖ux(t)‖2

0

0

µ(z)dz ≤ 2

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz,

∀t ∈ [0, T ).

Now, we define the functional

(4.14) L(t) = H1−η(t) + εΨ(t),

where

(4.15) Ψ(t) = 〈u′(t), u(t)〉+ λ

2
‖u(t)‖20 ,

for ε small enough and

(4.16) 0 < 2η < 1, 2/(1− 2η) ≤ p.

In what follows, we show that, there exists a constant θ̄1 > 0 such that

(4.17) L′(t) ≥ θ̄1

[

H(t) + ‖u′(t)‖20 + ‖u(t)‖pLp + ‖ux(t)‖20
]

.

Multiplying (4.1)1 by xu(x, t) and integrating over [ρ, 1], it leads to

(4.18) Ψ′(t) = ‖u′(t)‖20 − ‖ux(t)‖20 µ
(

‖ux(t)‖20
)

+ 〈f (u(t)) , u(t)〉.

Therefore

(4.19) L′(t) = (1− η)H−η(t)H ′(t) + εΨ′(t) ≥ εΨ′(t).

By (Ĥ∗
2 ), (Ĥ

∗
3 ), we obtain

(4.20)















‖ux(t)‖20 µ
(

‖ux(t)‖20
)

≤ µ̄1

∫ ‖ux(t)‖2

0

0 µ(z)dz,

〈f (u(t)) , u(t)〉 ≥ d1
∫ 1

ρ xdx
∫ u(x,t)

0 f(z)dz,
∫ 1

ρ
xdx

∫ u(x,t)

0
f(z)dz ≥ d̄1ρ ‖u(t)‖pLp .
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Hence, combining (4.10), (4.18) and (4.20) give

Ψ′(t) = ‖u′(t)‖20 − ‖ux(t)‖20 µ
(

‖ux(t)‖20
)

+ 〈f (u(t)) , u(t)〉(4.21)

≥ ‖u′(t)‖20 − µ̄1

∫ ‖ux(t)‖2

0

0

µ(z)dz + d1

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz

= ‖u′(t)‖20 − µ̄1

∫ ‖ux(t)‖2

0

0

µ(z)dz + d1δ1

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz

+d1(1 − δ1)

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz

= ‖u′(t)‖20 − µ̄1

∫ ‖ux(t)‖2

0

0

µ(z)dz + d1δ1

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz

+d1(1− δ1)

[

H(t) +
1

2
‖u′(t)‖20 +

1

2

∫ ‖ux(t)‖2

0

0

µ(z)dz

]

= d1(1− δ1)H(t) +

(

1 +
d1
2
(1 − δ1)

)

‖u′(t)‖20

+d1δ1

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz +
1

2
[d1 − 2µ̄1 − δ1d1]

∫ ‖ux(t)‖2

0

0

µ(z)dz

≥ d1(1− δ1)H(t) +

(

1 +
d1
2
(1 − δ1)

)

‖u′(t)‖20

+d1δ1d̄1ρ ‖u(t)‖pLp +
1

2
[d1 − 2µ̄1 − δ1d1]

∫ ‖ux(t)‖2

0

0

µ(z)dz.

By d1 > 2µ̄1, we can choose δ1 ∈ (0, 1) such that

(4.22) d1 − 2µ̄1 − δ1d1 > 0.

By using the inequalities (4.19), (4.21), (4.22), we obtain (4.17) with choosing
θ̄1 > 0 small enough.

From the formula of L(t) and (4.14), we can choose ε small enough that

(4.23) L(t) ≥ L(0) > 0, ∀t ∈ [0, T ).

Using the inequality
(

∑3
i=1 xi

)r

≤ 3r−1
∑3

i=1 x
r
i , for all r > 1 and x1, · · · ,

x3 ≥ 0, we deduce from (4.14) - (4.16) that

(4.24) L1/(1−η)(t) ≤ Const
(

H(t) + |〈u(t), u′(t)〉|1/(1−η)
+ ‖u(t)‖2/(1−η)

0

)

.

Step 2. The estimates. Using Young’s inequality, we have

(4.25) |〈u(t), u′(t)〉|1/(1−η) ≤ Const
(

‖u(t)‖sLp + ‖u′(t)‖20
)

,
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where s = 2/(1− 2η) ≤ p by (4.16). �

Now, we shall need the following lemma

Lemma 4.3. Let s = 2/(1− 2η) ≤ p, we obtain

(4.26) ‖v‖sLp + ‖v‖2/(1−η)
0 ≤ 2

ρ

(

‖vx‖20 + ‖v‖pLp

)

, for any v ∈ V.

Proof of Lemma 4.3 is straightforward, so we omit the details.

Step 3. Blow up. It follows from (4.24)-(4.26) that
(4.27)

L1/(1−η)(t) ≤ Const
(

H(t) + ‖u′(t)‖20 + ‖ux(t)‖20 + ‖u(t)‖pLp

)

, ∀t ∈ [0, T ).

Using (4.17), (4.27) yields

(4.28) L′(t) ≥ θ̄2L
1/(1−η)(t), ∀t ∈ [0, T ),

where θ̄2 is a positive constant. By integrating (4.28) over (0, t), it gives

(4.29) Lη/(1−η)(t) ≥ 1

L−η/(1−η)(0)− θ̄2η
1−η t

, 0 ≤ t <
1

θ̄2η
(1− η)L−η/(1−η)(0).

Therefore, L(t) blows up in a finite time given by T∗ = 1
θ̄2η

(1− η)L−η/(1−η)(0).

Theorem 4.2 is proved completely. �

5. Exponential Decay of Solutions

This section investigates the decay of the solution of Prob. (1.1) – (1.3) corre-
sponding to with ζ = 0, f(x, t, u, ux, ut) = −λut + f(u) + F (x, t), as follows

(5.1)



















utt − µ
(

‖ux(t)‖20
)

(uxx + 1
xux) + λut = f(u) + F (x, t),

ρ < x < 1, t > 0,
u(ρ, t) = ux(1, t) = 0
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

where µ, f, F, ũ0, ũ1 are given functions and λ > 0, 0 < ρ < 1 are the given

constants. We prove that if

∫ ‖ũ0x‖2
0

0

µ(z)dz − p

∫ 1

ρ

xdx

∫ ũ0(x)

0

f(z)dz > 0 and if

the initial energy, ‖F (t)‖0 are small enough, then the energy of the solution decays
exponentially as t → +∞. For this purpose, we make the following assumption

(H∞
3 ) f ∈ C1 (R) , f(0) = 0 and there exist the constant d2 > 0

and a nondecreasing function F ∗ : R+ → R+ with lim
z→0+

F ∗(z) = 0 such that
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(i) yf(y) ≤ d2

∫ y

0

f(z)dz, for all y ∈ R,

(ii)

∫ y

0

f(z)dz ≤ y2F ∗(|y|), for all y ∈ R;

(H∞
4 ) F ∈ L∞ (

R+;L
2
)

∩ L1
(

R+;L
2
)

, F ′ ∈ L2
(

R+;L
2
)

and there exist

two constants C̄0 > 0, γ̄0 > 0 such that ‖F (t)‖0 ≤ C̄0e
−γ̄0t, for all t ≥ 0.

We will show that the example of f in Section 4 also satisfies (H∞
3 ).

We consider the following function

(5.2) f(u) = d |u|p−2
u lnn(e+ u2),

where d > 0, p > 2, n > 1 are constants, with p > max{2q + 2, 2n}, with q > 1 as
in (4.3).

With the condition (H∞
3 )(i) :

By (5.4), we have

(5.3)

∫ y

0

f(z)dz =
1

p
yf(y)− 2nd

p
G(y),

where G(y) =

∫ y

0

|z|p z
e+ z2

lnn−1(e+ z2)dz. Note that the function G(y) satisfies

(5.4) G(−y) = G(y) ≥ 0, ∀y ∈ R.

Let y ≥ 0, by

1 ≤ lnn−1(e+ z2) ≤ lnn(e + z2) ≤ lnn(e+ y2),

0 ≤ |z|p z
e+ z2

≤ |z|p−2
z, ∀z ∈ [0, y],

we have

G(y) =

∫ y

0

|z|p z
e+ z2

lnn−1(e+ z2)dz

≤ lnn(e+ y2)

∫ y

0

|z|p−2
zdz

=
1

p
|y|p lnn(e + y2), ∀y ≥ 0.

By (5.4), we have

(5.5) G(y) ≤ 1

p
|y|p lnn(e+ y2) =

1

pd
yf(y), ∀y ∈ R.
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It follows from (5.3) and (5.5) that

∫ y

0

f(z)dz ≥ 1

p
yf(y)− 2nd

p

1

pd
yf(y)(5.6)

=
p− 2n

p2
yf(y), ∀y ∈ R.

Hence, (H∞
3 )(i) holds, with d2 =

p2

p− 2n
.

With the condition (H∞
3 )(ii) :

By G(y) =

∫ y

0

|z|p z
e+ z2

lnn−1(e + z2)dz ≥ 0 for all y ∈ R and (5.3), it yealds

(5.7)

∫ y

0

f(z)dz ≤ 1

p
yf(y) =

d

p
|y|p lnn(e + y2) = y2F ∗(|y|),

where F ∗(z) = d
pz

p−2 lnn(e+ z2) → 0 as z → 0+.

Thus, (H∞
3 )(ii) holds.

First, we construct the following Lyapunov functional

(5.8) L1(t) = E(t) + δΨ(t),

where δ > 0 is chosen later and

E(t) =
1

2
‖u′(t)‖20 +

1

2

∫ ‖ux(t)‖2
0

0

µ(z)dz −
∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz(5.9)

=
1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t),

(5.10) Ψ(t) = 〈u′(t), u(t)〉+ λ

2
‖u(t)‖20,

where

(5.11) I(t) = I(u(t)) =

∫ ‖ux(t)‖2

0

0

µ(z)dz − p

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz.

Then we have the following theorem.
Theorem 5.1. Assume that (H∗

2 ), (H
∞
3 ), (H∞

4 ) hold. Let (ũ0, ũ1) ∈ (V ∩H2)×V
such that I(0) > 0 and the initial energy E(0) satisfy

(5.12) η∗ = µ∗ −
1

2ρ
p(1− ρ2)(1− ρ)F ∗

(
√

1− ρ

ρ
R∗

)

> 0,
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where

R∗ =

(

2pE∗
(p− 2)µ∗

)1/2

,

E∗ =

(

E(0) +
1

2
ρ∗

)

exp (ρ∗) ,

ρ∗ = ‖F‖L1(R+;L2) .

Let µR∗
≡ max

0≤z≤R2
∗

µ(z) < η∗ +
pµ∗
d2

, with µ∗, d2 as in (H∗
2 ), (H

∞
3 )(i).

Then, for all the global weak solution of Prob. (1.1)-(1.3) is exponential decay-
ing, i.e., there exist positive constants C̄, γ̄ such that

(5.13) ‖u′ (t)‖20 + ‖ux(t)‖20 ≤ C̄ exp(−γ̄t), for all t ≥ 0.

Proof.
First, we need the following lemmas.

Lemma 5.2. The energy functional E(t) defined by (5.9) satisfies

(i) E′ (t) ≤ 1

2
‖F (t)‖0 +

1

2
‖F (t)‖0 ‖u′ (t)‖20 ,(5.14)

(ii) E′ (t) ≤ −
(

λ− ε1
2

)

‖u′ (t)‖20 +
1

2ε1
‖F (t)‖20 ,

for all ε1 > 0.
Proof. Multiplying (5.1)1 by xu′(x, t) and integrating over [ρ, 1], we get

(5.15) E′ (t) = −λ ‖u′ (t)‖20 + 〈F (t), u′(t)〉.

On the other hand

(5.16) 〈F (t), u′(t)〉 ≤ 1

2
‖F (t)‖0 +

1

2
‖F (t)‖0 ‖u′ (t)‖20 .

It follows from (5.15) and (5.16), it is easy to see (5.14)(i) holds.
Similarly,

(5.17) 〈F (t), u′(t)〉 ≤ 1

2ε1
‖F (t)‖20 +

ε1
2
‖u′ (t)‖20 , for all ε1 > 0.

It follows from (5.15) and (5.17), it is easy to see (5.14)(ii) holds.
Lemma 5.2 is proved completely. �

Lemma 5.3. Assume that (H∗
2 ), (H

∞
3 ), (H∞

4 ) hold. Then, if we have I(0) > 0
and (5.12) holds. Then I(t) > 0, ∀t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T̃1 > 0 such that

(5.18) I(t) = I(u(t)) > 0, ∀t ∈ [0, T̃1],
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this implies

E(t) ≥ 1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz(5.19)

≥ 1

2
‖u′(t)‖20 +

(p− 2)µ∗
2p

‖ux(t)‖20 , ∀t ∈ [0, T̃1].

Combining (5.14)i, (5.19) and using Gronwall’s inequality to obtain

(5.20) ‖ux(t)‖20 ≤ 2p

(p− 2)µ∗
E(t) ≤ 2pE∗

(p− 2)µ∗
≡ R2

∗, ∀t ∈ [0, T̃1],

where E∗ as in (5.12).
Hence, it follows from (H∞

3 , (ii)) and (5.20) that

p

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz ≤ p

∫ 1

ρ

xu2(x, t)F ∗(|u(x, t)|)dx

≤ 1

2
p(1− ρ2) ‖u(t)‖2C0(Ω̄) F

∗
(

‖u(t)‖C0(Ω̄)

)

≤ 1

2
p(1− ρ2)

(

1− ρ

ρ

)

‖ux(t)‖20 F ∗
(
√

1− ρ

ρ
‖ux(t)‖20

)

≤ 1

2ρ
p(1− ρ2)(1 − ρ)F ∗

(
√

1− ρ

ρ
R∗

)

‖ux(t)‖20 .(5.21)

Therefore I(t) ≥ η∗ ‖ux(t)‖20 , ∀t ∈ [0, T̃1], where η∗ as in (5.12).
Now, we put T∞ = sup {T > 0 : I(t) > 0, ∀t ∈ [0, T ]} . If T∞ < +∞ then, by

the continuity of I(t), we have I(T∞) ≥ 0. By the same arguments as above, we
can deduce that there exists T̃∞ > T∞ such that I(t) > 0, ∀t ∈ [0, T̃∞]. Hence, we
conclude that I(t) > 0, ∀t ≥ 0.

Lemma 5.3 is proved completely. �

Lemma 5.4. Assume that (H∗
2 ), (H

∞
3 ), (H∞

4 ) hold. Let I(0) > 0 and (5.12) hold.
Put

(5.22) E1(t) = ‖u′(t)‖20 +
∫ ‖ux(t)‖2

0

0

µ(z)dz + I(t).

Then there exist the positive constants β̄1, β̄2 such that

(5.23) β̄1E1(t) ≤ L1(t) ≤ β̄2E1(t), ∀t ≥ 0,

for δ is small enough.

Proof. It is easy to see that

L1(t) =
1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t)(5.24)

+δ〈u′(t), u(t)〉+ δλ

2
‖u(t)‖20 .
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From the following inequalities

δ |〈u′(t), u(t)〉| ≤ δ

2
‖u′(t)‖20 + δ

(1− ρ)
2

4ρ
‖ux(t)‖20 ,(5.25)

∫ ‖ux(t)‖2

0

0

µ(z)dz ≥ µ∗ ‖ux(t)‖20 ,

we deduce that

L1(t) ≥ 1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz

+
1

p
I(t)− δ

2
‖u′(t)‖20 − δ

(1− ρ)
2

4ρ
‖ux(t)‖20

≥ 1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz

+
1

p
I(t)− δ

2
‖u′(t)‖20 − δ

(1− ρ)
2

4ρµ∗

∫ ‖ux(t)‖2

0

0

µ(z)dz

=
1− δ

2
‖u′(t)‖20

+

(

1

2
− 1

p
− δ

(1− ρ)
2

4ρµ∗

)

∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t)

≥ β̄1E1(t),(5.26)

where we choose

(5.27) β̄1 = min{1− δ

2
,
1

2
− 1

p
− δ

(1− ρ)2

4ρµ∗
,
1

p
},

with δ small enough that 0 < δ < min{1;
2ρµ∗

(

1− 2
p

)

(1− ρ)
2 }.

Similarly, we can prove that

L1(t) ≤ 1

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t)(5.28)

+
1

2
δ ‖u′(t)‖20 + δ

(1− ρ)
2

4ρ
‖ux(t)‖20 + δλ

(1 − ρ)2

4ρ
‖ux(t)‖20
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≤ 1 + δ

2
‖u′(t)‖20 +

(

1

2
− 1

p

)
∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t)

+
δ (1 + λ) (1− ρ)

2

4ρ
‖ux(t)‖20

≤ 1 + δ

2
‖u′(t)‖20

+

(

1

2
− 1

p
+

δ (1 + λ) (1− ρ)2

4ρµ∗

)

∫ ‖ux(t)‖2

0

0

µ(z)dz +
1

p
I(t) ≤ β̄2E1(t),

where β̄2 = max
{

1+δ
2 , 1

2 − 1
p + δ(1+λ)(1−ρ)2

4ρµ∗

}

.

Lemma 5.4 is proved completely. �

Lemma 5.5. Assume that (H∗
2 ), (H

∞
3 ), (H∞

4 ) hold. Let I(0) > 0 and (5.12) hold.
The functional Ψ(t) defined by (5.10) satisfies

Ψ′ (t) ≤ ‖u′ (t)‖20 +
1

2ε2
‖F (t)‖20 −

δ1d2
p

I(t)

−
[

d2
p

(

pµ∗
d2

+ η∗ − µR∗

)

− δ1d2η
∗

p
− ε2

(1 − ρ)2

4ρ

]

1

µR∗

∫ ‖ux(t)‖2

0

0

µ(z)dz,(5.29)

for all ε2 > 0, δ1 ∈ (0, 1).

Proof. By multiplying (5.1)1 by xu(x, t) and integrating over [ρ, 1], we obtain

(5.30) Ψ′ (t) = ‖u′ (t)‖20 − ‖ux(t)‖20 µ
(

‖ux(t)‖20
)

+ 〈f(u(t)), u(t)〉+ 〈F (t), u(t)〉.

By the following inequalities

−‖ux(t)‖20 µ
(

‖ux(t)‖20
)

≤ −µ∗ ‖ux(t)‖20 ,

〈f(u(t)), u(t)〉 ≤ d2

∫ 1

ρ

xdx

∫ u(x,t)

0

f(z)dz

=
d2
p

[

∫ ‖ux(t)‖2

0

0

µ(z)dz − I(t)

]

,

I(t) ≥ η∗ ‖ux(t)‖20 ,

〈F (t), u(t)〉 ≤ ε2
(1− ρ)2

4ρ
‖ux(t)‖20 +

1

2ε2
‖F (t)‖20 , ∀ε2 > 0,(5.31)
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we deduce that

Ψ′ (t) = ‖u′ (t)‖20 − ‖ux(t)‖20 µ
(

‖ux(t)‖20
)

+ 〈f(u(t)), u(t)〉+ 〈F (t), u(t)〉

≤ ‖u′ (t)‖20 − µ∗ ‖ux(t)‖20 +
d2
p

[

∫ ‖ux(t)‖2
0

0

µ(z)dz − I(t)

]

+ε2
(1− ρ)2

4ρ
‖ux(t)‖20 +

1

2ε2
‖F (t)‖20

= ‖u′ (t)‖20 −
(

µ∗ − ε2
(1− ρ)2

4ρ

)

‖ux(t)‖20 +
d2
p

∫ ‖ux(t)‖2

0

0

µ(z)dz

−δ1d2
p

I(t)− (1 − δ1)d2
p

I(t) +
1

2ε2
‖F (t)‖20

≤ ‖u′ (t)‖20 −
(

µ∗ − ε2
(1− ρ)2

4ρ

)

‖ux(t)‖20 +
d2
p

∫ ‖ux(t)‖2

0

0

µ(z)dz

−δ1d2
p

I(t)− (1 − δ1)d2
p

η∗ ‖ux(t)‖20 +
1

2ε2
‖F (t)‖20

= ‖u′ (t)‖20 −
(

µ∗ +
(1− δ1)d2

p
η∗ − ε2

(1− ρ)2

4ρ

)

‖ux(t)‖20

+
d2
p

∫ ‖ux(t)‖2

0

0

µ(z)dz − δ1d2
p

I(t) +
1

2ε2
‖F (t)‖20

≤ ‖u′ (t)‖20 −
(

µ∗ +
(1− δ1)d2

p
η∗ − ε2

(1− ρ)2

4ρ

)

1

µR∗

∫ ‖ux(t)‖2

0

0

µ(z)dz

+
d2
p

∫ ‖ux(t)‖2

0

0

µ(z)dz − δ1d2
p

I(t) +
1

2ε2
‖F (t)‖20

= ‖u′ (t)‖20

−
[

d2
p

(

pµ∗
d2

+ η∗ − µR∗

)

− δ1d2η
∗

p
− ε2

(1− ρ)2

4ρ

]

1

µR∗

∫ ‖ux(t)‖2

0

0

µ(z)dz

−δ1d2
p

I(t) +
1

2ε2
‖F (t)‖20 .(5.32)

Hence, the Lemma 5.5 is proved by using some simple estimates. �

Now we continue to prove Theorem 5.1.
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Then, we deduce from (5.8), (5.14)(ii) and (5.29) that

L′
1(t) ≤ −

(

λ− ε1
2

− δ
)

‖u′ (t)‖20

− δ

[

d2
p

(

pµ∗
d2

+ η∗ − µR∗

)

− δ1d2η
∗

p
− ε2

(1− ρ)2

4ρ

]

1

µR∗

∫ ‖ux(t)‖2
0

0

µ(z)dz

− δδ1d2
p

I(t) +
1

2

(

1

ε1
+

δ

ε2

)

‖F (t)‖20(5.33)

for all δ, ε1, ε2 > 0, δ1 ∈ (0, 1).

Because of µR∗
< η∗ +

pµ∗
d2

and

lim
δ1→0+, ε2→0+

[

d2
p

(

pµ∗
d2

+ η∗ − µR∗

)

− δ1d2η
∗

p
− ε2

(1− ρ)2

4ρ

]

1

µR∗

=
d2

pµR∗

(

pµ∗
d2

+ η∗ − µR∗

)

> 0,

we can choose δ1 ∈ (0, 1) and ε2 > 0 such that

(5.34) σ1 =

[

d2
p

(

pµ∗
d2

+ η∗ − µR∗

)

− δ1d2η
∗

p
− ε2

(1− ρ)2

4ρ

]

1

µR∗

> 0.

Then, for ε1 small enough such that 0 <
ε1
2

< λ and if δ > 0 such that

(5.35) σ2 = λ− ε1
2

− δ > 0, 0 < δ < min

{

1;
2ρµ∗

(1− ρ)2

(

1− 2

p

)

}

,

it follows from (5.23), (5.33)-(5.35) that

(5.36) L′
1(t) ≤ −γ̄L1(t) + C̃0e

−2γ̄0t,

where 0 < γ̄ < min{ β̄3

β̄2
, 2γ̄0} with β̄3 = min{δσ1, σ2,

δδ1d2
p

} and C̃0 =

1

2

(

1
ε1

+ δ
ε2

)

C̄2
0 .

On the other hand, we have

(5.37) L1(t) ≥ β̄1 min{1, µ∗}
(

‖u′ (t)‖20 + ‖ux(t)‖20
)

.

Combining (5.36) and (5.37) we get (5.13). Theorem 5.1 is proved completely. �
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