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A NOTE ON THE CAUCHY PROBLEM FOR HEAT

EQUATIONS WITH COUPLING MOVING REACTIONS OF

MIXED TYPE†
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Abstract. This paper deals with the Cauchy problem for heat equations
with coupling moving reactions of mixed type. After obtaining the infinite
Fujita blow-up exponent, we classify optimally the simultaneous and non-

simultaneous blow-up for two components of the solutions. Moreover, blow-
up rates and set are determined. By using the analogous procedures, one
can fill in the gaps for the other two systems, which are studied in the
paper ‘Australian and New Zealand Industrial and Applied Mathematics

Journal’ 48(2006)37–56.
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1. Introduction and main results

Recently, Xiang, Chen and Mu in [1] studied the following two types of par-
abolic equations ut = ∆u+ um(x0(t), t)v

p(x0(t), t) in RN × (0, T ),
vt = ∆v + uq(x0(t), t)v

n(x0(t), t) in RN × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x) in RN ,

(1)

and

 ut = ∆u+ emu(x0(t),t)+pv(x0(t),t) in RN × (0, T ),
vt = ∆v + equ(x0(t),t)+nv(x0(t),t) in RN × (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x) in RN ,

(2)

where u0(x), v0(x) ≥ 0, ̸≡ 0 are continuous bounded functions in RN ; m,n, p, q ≥
0 and pq > 0 for the coupling; moving site x0(t) : R+ → RN is Hölder continuous.
The results for (1) can be summarized below with the help of the figure:

Received January 22, 2013. Revised March 17, 2016. Accepted March 21, 2016. ∗Corresponding

author. †This paper is partially supported by NNSF of China, Shandong Provincial Natural Science

Foundation, China, and the Fundamental Research Funds for the Central Universities.

c⃝ 2016 Korean SIGCAM and KSCAM.

359



360 Bingchen Liu and Fengjie Li

-

6

1

n

1

p+1

(0,0) q+1 m

V

VIII

II

III

I

IX

VII

IV

VI

Figure 1.1. Blow-up classifications for system (1)

• q ≥ m−1 > 0, p ≥ n−1 > 0, or q > m−1, p > n−1, pq−mn+m+n−1 >
0 (i.e., I , II , VIII , IX ): Simultaneous blow-up occurs. That is, the
components u and v of the solution blow up at the same time (see [2, 3]).
Moreover, uniform blow-up profiles are obtained.

• q < m − 1, p ≥ n − 1 > 0, or q ≥ m − 1 > 0, p < n − 1 (i.e., III ,
IV ): One component of the solution blows up while another remains
bounded. That is, non-simultaneous blow-up occurs.

It can be checked that blow-up phenomena are unsettled yet in the exponent
regions V , VI , VII , and on the boundary between V and VIII , between IX
and VI , between V and III , and between IV and VI . For system (2), the
authors obtained that simultaneous blow up occurs for q ≥ m and p ≥ n; If
q < m, p ≥ n, or q ≥ m, p < n, non-simultaneous blow-up occurs; The uniform
blow-up profiles are obtained for q ≥ m, p ≥ n. Equivalently to VII in Figure
1.1 (i.e., m > q, n > p), blow-up phenomena are unknown.

Motivated by [1], we study the parabolic equations with coupling moving
reactions of mixed type,{

ut = ∆u+ um(x0(t), t)e
pv(x0(t),t) in RN × (0, T ),

vt = ∆v + uq(x0(t), t)e
nv(x0(t),t) in RN × (0, T ),

(3)

with smooth initial data u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in RN ;
constants m, n, p, q ≥ 0; x0(t) : R+ → RN is Hölder continuous; let T be the
maximal existence time of local classical solutions. The existence and uniqueness
of local positive classical solutions (u, v) of (3) can be obtained by using the
standard methods of [4, 5]. Nonlinear parabolic systems like (3) come from
population dynamics, chemical reactions, heat transfer, etc., where u and v
represent the densities of two biological populations during a migration, the
thickness of two kinds of chemical reactants, the temperatures of two different
materials during a propagation, etc, in which the nonlinear reactions in such
dynamical systems take place only at a single (sometimes several) site(s) and
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couple through different types of nonlinearities. The interested readers refer to
[6, 7, 8] and the papers therein. We obtain the first theorem about the infinite
Fujita blow-up exponent and blow-up set for (3).

Theorem 1.1. Let (u, v) be any positive local classical solution of (3). Then
limt→T (u+v) = +∞, x ∈ RN if and only if max{m−1, n, pq−n(m−1)} > 0.
And the solutions blow up everywhere in RN .

In the sequel, we discuss the blow-up solutions only. The second result shows
the occurring of only simultaneous or non-simultaneous blow-up.

Theorem 1.2.

(i) Simultaneous blow-up occurs for every initial data if m ≤ q + 1 and
n ≤ p.

(ii) u blows up alone for every initial data if m > q + 1 and n ≤ p.
(iii) v blows up alone for every initial data if m ≤ q + 1 and n > p.

Corollary 1.3.

(i) If there exist initial data such that u blows up alone, then m > q + 1.
(ii) If there exist initial data such that v blows up alone, then n > p.

Additionally, we assume that x0 : R+ → R is smooth and

(H) x′
0(t)u

′
0(x), x′

0(t)v
′
0(x) ≥ 0, x ∈ R, t ∈ [0, T ); For small ε ∈ (0, 1),

u′′
0(x) + (1− ε)um(x0(0), 0)e

pv(x0(0),0) ≥ 0,

v′′0 (x) + (1− ε)uq(x0(0), 0)e
nv(x0(0),0) ≥ 0.

Theorem 1.4. Let assumption (H) be in force.

(i) There exist initial data such that u blows up alone if m > q + 1.
(ii) There exist initial data such that v blows up alone if n > p.
(iii) Both non-simultaneous blow-up and simultaneous blow-up may occur if

m > q + 1 and n > p.

The key clues on non-simultaneous and simultaneous blow-up are the signals
of (m− q − 1) and (n− p). By using the analogous methods in this paper, one
can check that the key clues are the signals of (m− q − 1), (n− p− 1) and the
signals of (m− q), (n− p) for problems (1) and (2), respectively. The following
is the detail:

• The exponent region V and the boundary between V and III for (1):
only v blows up.

• The exponent region VI and the boundary between IV and VI for (1):
only u blows up.

• The exponent region VII for (1): the coexistence region, in which si-
multaneous and non-simultaneous blow-up may occur according to the
choosing of the initial data.

• The boundary between V and VIII , and the boundary between IX
and VI for (1): only simultaneous blow-up occurs.
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• For (2), the exponent region m > q and n > p (equivalent to VII for
(1)): a coexistence region for the existence of both simultaneous and
non-simultaneous blow-up.

The following results give the blow-up rates. It can be understood that non-
simultaneous blow-up rate is equivalent to the one for the scalar equation (see

[9]): If u (v) blows up alone, then u(x, t) = O
(
(T − t)−

1
m−1

) (
ev(x,t) = O

(
(T −

t)−
1
n

))
for any x ∈ RN . By using the analogous methods of [10], simultaneous

blow-up rates are obtained.

Theorem 1.5. Let (u, v) be a blow-up solution of (3).
(i) If m < q + 1, n < p, then

u(x, t) = O
(
(T − t)−

p−n
pq−n(m−1)

)
, ev(x,t) = O

(
(T − t)−

q+1−m
pq−n(m−1)

)
in RN .

(ii) If m < q + 1, n = p, then

uq+1−m(x, t) = O
(
| log(T − t)|

)
, env(x,t)v

q
q+1−m (x, t) = O

(
(T − t)−1

)
in RN .

(iii) If m = q + 1, n < p, then

um−1(x, t)(log u(x, t))
p

p−n = O
(
(T−t)−1

)
, e(p−n)v(x,t) = O

(
| log(T−t)|

)
in RN .

(iv) If m = q + 1, n = p, then

log u(x, t) = O
(
| log(T − t)|

)
, v(x, t) = O

(
| log(T − t)|

)
in RN .

(v) If m > q + 1, n > p and there exist initial data such that simultaneous
blow-up occurs, then

u(x, t) = O
(
(T − t)−

p−n
pq−n(m−1)

)
, ev(x,t) = O

(
(T − t)−

q+1−m
pq−n(m−1)

)
in R.

2. Infinite Fujita blow-up exponent

We prove the blow-up criteria and blow-up set for system (3) by the compar-
ison principle.

Proof. (Theorem 1.1) Inspired by Souplet [9], we introduce the following aux-
iliary functions

u(x, t) = u(t) =

∫ t

0

um(x0(s), s)e
pv(x0(s),s)ds,

v(x, t) = v(t) =

∫ t

0

uq(x0(s), s)e
nv(x0(s),s)ds,

u(x, t) = u(t) = u(x, t) + ∥u0∥ı, v(x, t) = v(t) = v(x, t) + ∥v0∥ı.
It can be checked that

ut −∆u = ut −∆u = ut −∆u, vt −∆v = vt −∆v = vt −∆v in RN × (0, T ), (4)

u(0) ≤ u0(x) ≤ u(0), v(0) ≤ v0(x) ≤ v(0) in RN . (5)

By the comparison principle, we have

u(t) ≤ u(x, t) ≤ u(t), v(t) ≤ v(x, t) ≤ v(t) in RN × [0, T ). (6)
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Especially, u(t) ≤ u(x0(t), t) ≤ u(t), v(t) ≤ v(x0(t), t) ≤ v(t). By a simple
calculation, we obtain

ut(t) ≥ um(t)vp(t), vt(t) ≥
( n

n+ 1

)n+1
uq(t)vn+1(t). (7)

One can check from (7) that limt→T

(
u(t) + v(t)

)
= +ı for every initial data if

max{m − 1, n, pq − n(m − 1)} > 0. Hence any positive solution of (3) blows
up everywhere in RN . On the other hand, it is easy to see that every positive
solution is global for m ≤ 1 and n = pq = 0. �

3. Any blow-up must be simultaneous or non-simultaneous

By (6), u, u and u shall the same blow-up time for all x ∈ RN , and so do v,
v and v. It suffices to discuss blow-up estimates of u and v.

Proof. (Theorem 1.2) By Theorem 1.1, every solution blows up. Combining
(4) with (5), we obtain that there exists some positive constant C such that

um(t)epv(t) ≤ ut(t) ≤ Cum(t)epv(t), uq(t)env(t) ≤ vt(t) ≤ Cuq(t)env(t). (8)

(i) m ≤ q + 1, n ≤ p.

• If m < q + 1 and n < p, then we have ce(p−n)v(t) ≤ uq−m+1(t) ≤
Ce(p−n)v(t) by using (8).

• If m < q + 1 and n = p, then cv(t) ≤ uq−m+1(t) ≤ Cv(t).
• If m = q + 1 and n < p, then ce(p−n)v(t) ≤ log u(t) ≤ Ce(p−n)v(t).
• If m = q + 1 and n = p, then cv(t) ≤ log u(t) ≤ Cv(t).

According to the above four subcases, we have, if m ≤ q + 1 and n ≤ p, only
simultaneous blow-up occurs.

(ii) If m > q+1 and p > n, then e(p−n)v(t) ≤ Cuq−m+1(t). Hence there must
be the case for u blowing up alone for every initial data. If m > q+1 and p = n,
then v(t) ≤ Cuq−m+1(t). Then u blows up alone for every initial data.

Case (iii) can be obtained by the similar method of (ii). �

4. Existence of simultaneous and non-simultaneous blow-up

We use two lemmas to prove Theorem 1.4 (i)-(ii). Define the set of the initial
data V0 = {(u0, v0) | (u0, v0) satisfies (H)}. Without loss of generality, we
consider the case: x′

0(t), u
′
0(x), v

′
0(x) ≥ 0, t ∈ [0, T ), x ∈ R.

Lemma 4.1. For any (u0, v0) ∈ V0, there are

ut(x, t), vt(x, t), ux(x, t), vx(x, t) ≥ 0 in R× [0, T ), (9)

ut(x, t) ≥ εum(x0(t), t)e
pv(x0(t),t), vt(x, t) ≥ εuq(x0(t), t)e

nv(x0(t),t) in R× [0, T ). (10)

Proof. By calculations, we have utx − uxxx = vtx − vxxx = 0 in R× (0, T ), and
u′
0(x), v

′
0(x) ≥ 0 in R. Then ux, vx ≥ 0 in R× [0, T ) by the comparison principle.

One can also check that

utt − utxx = mum−1(x0(t), t)e
pv(x0(t),t)

[
ux(x0(t), t)x

′
0(t) + ut(x0(t), t)

]
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+ um(x0(t), t)e
pv(x0(t),t)p

[
vx(x0(t), t)x

′
0(t) + vt(x0(t), t)

]
≥ 0,

vtt − vtxx ≥ 0 in R× (0, T ),

u′′
0(x) + um(x0(0), 0)e

pv(x0(0),0) ≥ 0, v′′0 (x) + uq(x0(0), 0)e
nv(x0(0),0) ≥ 0 in R.

By the comparison principle, ut(x, t), vt(x, t) ≥ 0 in R × [0, T ). Then (9) is
obtained. In order to prove (10), construct auxiliary functions

J(x, t) = ut(x, t)− εum(x0(t), t)e
pv(x0(t),t),

K(x, t) = vt(x, t)− εuq(x0(t), t)e
nv(x0(t),t) in R× [0, T ).

For constant ε ∈ (0, 1), one can check

Jt − Jxx ≥ (1− ε)
[
um(x0(t), t)e

pv(x0(t),t)
]′ ≥ 0 in R× (0, T ),

Kt −Kxx ≥ (1− ε)
[
uq(x0(t), t)e

nv(x0(t),t)
]′ ≥ 0 in R× (0, T ),

u′′
0(x) + (1− ε)um(x0(0), 0)e

pv(x0(0),0) ≥ 0 in R,

v′′0 (x) + (1− ε)uq(x0(0), 0)e
nv(x0(0),0) ≥ 0 in R.

By the comparison principle, J(x, t), K(x, t) ≥ 0 in R× [0, T ). �

By Lemma 4.1, we obtain the following important estimates

u(x0(t), t) ≤ C(T − t)−
1

m−1 , m > 1, t ∈ [0, T ), (11)

ev(x0(t),t) ≤ C(T − t)−
1
n , n > 0, t ∈ [0, T ). (12)

In fact, by using (10),

(u(x0(t), t))
′ =ux(x0(t), t)x

′
0(t) + ut(x0(t), t) ≥ εum(x0(t), t)e

pv(x0(t),t),

(v(x0(t), t))
′ ≥εuq(x0(t), t)e

nv(x0(t),t), t ∈ [0, T ).

By integrations, estimates (11) and (12) can be obtained.
We will use (11) and (12) to prove the existence of non-simultaneous blow-up.

Lemma 4.2. Assume the initial data satisfies (H).

(i) There exist suitable initial data such that u blows up alone if m > q+1.
(ii) There exist suitable initial data such that v blows up alone if n > p.

Proof. At first, we prove the phenomena for u blowing up alone under suitable
initial data. Assume that (ũ0, ṽ0) be a pair of initial data such that the positive
solution of (3) blows up. Fix v0(≥ ṽ0) and take M0 > ∥v0∥∞. Let u0(≥ ũ0) be

large such that T satisfies M0 ≥ ∥v0∥∞ + m−1
m−q−1C

qenM0T
m−q−1
m−1 .

Consider the auxiliary problem

wt = wxx + CqenM0(T − t)−
q

m−1 in R× (0, T ), and w(x, 0) = v0(x) in R.

For m > q + 1 and by Green’s identity [4, 11], we have

w(x, t) =

∫ +∞

−∞
Γ(x, y, t, 0)v0(y)dy +

∫ t

0

∫ +∞

−∞
Γ(x, y, t, τ)CqenM0(T − τ)−

q
m−1 dydτ
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≤∥v0∥∞ +
m− 1

m− q − 1
CqenM0T

m−q−1
m−1 ≤ M0,

where Γ is the fundamental solution of the heat equation. Hence w(x0(t), t) ≤
M0. So w satisfies

wt ≥ wxx + Cq(T − t)−
q

m−1 enw(x0(t),t) in R× (0, T ), w(x, 0) = v0(x) in R.

It follows from (11) that v satisfies

vt ≤ vxx + Cq(T − t)−
q

m−1 env(x0(t),t) in R× (0, T ), v(x, 0) = v0(x) in R.

By the comparison principle, v ≤ w ≤ M0 in R×(0, T ). Since (u0, v0) ≥ (ũ0, ṽ0),
(u, v) blows up. And hence only u blows up at time T .

Secondly, we prove the phenomena for v blowing up alone under suitable
initial data. Assume that (ũ0, ṽ0) be a pair of initial data such that the positive
solution of (3) blows up. Fix u0(≥ ũ0) and take M1 > ∥u0∥∞. Let v0(≥ ṽ0) be

large such that T satisfies M1 ≥ ∥u0∥∞ + n
n−pC

pMm
1 T

n−p
n .

Consider the auxiliary problem

zt = zxx + CpMm
1 (T − t)−

p
n in R× (0, T ), and z(x, 0) = u0(x) in R.

For n > p and by Green’s identity, we have z(x, t) ≤ ∥u0∥∞+ n
n−pC

pMm
1 T

n−p
n ≤

M1. So z satisfies zt ≥ zxx+Cpzm(x0(t), t)(T−t)−
p
n in R×(0, T ). It follows from

(12) that ut ≤ uxx +Cpum(x0(t), t)(T − t)−
p
n in R× (0, T ). By the comparison

principle, u(x, t) ≤ z(x, t) ≤ M1 in R × (0, T ). Since (u0, v0) ≥ (ũ0, ṽ0), (u, v)
blows up. And hence only v blows up. �

We use two lemmas to prove Theorem 1.4 (iii).

Lemma 4.3. The set of (u0, v0) in V0 such that v (u) blows up alone is open
in L∞-norm.

Proof. Without loss of generality, we only prove the case for v blowing up with
u remaining bounded. Let (u, v) be a solution of (3) with initial data (u0, v0) ∈
V0 such that v blows up while u remains bounded up to blow-up time T , say
0 < u(x, t) ≤ M . By Corollary 1.3, there must be n > p. It suffices to find
a Lı-neighborhood of (u0, v0) in V0 such that any solution (û, v̂) of (3) coming
from this neighborhood maintains the property that v̂ blows up while û remains
bounded. Take M2 > M + ∥u0∥∞/2. Let (ũ, ṽ) be the solution of the following
problem

ũt = ũxx + ũm(x0(t), t)e
pṽ(x0(t),t),

ṽt = ṽxx + ũq(x0(t), t)e
nṽ(x0(t),t) in R× (T − ε0, T − ε0 + T0),

ũ(x, T − ε0) = ũ0(x), ṽ(x, T − ε0) = ṽ0(x) in R,

where (ũ0, ṽ0) and ε0 are to be determined. Denote

N(u0, v0) =
{
(ũ0, ṽ0) ∈ V0 | ∥ũ0(x)− u(x, T − ε0)∥∞,
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∥ṽ0(x)− v(x, T − ε0)∥∞ < ∥u0∥∞/2
}
.

Since v blows up at time T , there exists some small constant ε0 > 0 such that

(ũ, ṽ) blows up and T0 satisfies M2 > M + ∥u0∥∞
2 + n

n−pC
pT

n−p
n

0 Mm
2 , provided

(ũ0, ṽ0) ∈ N(u0, v0). Consider the auxiliary system{
Ut = Uxx + Cp(T − ε0 + T0 − t)−

p
nMm

2 in R× (T − ε0, T − ε0 + T0),

U(x, T − ε0) = ũ0(x) in R.

By Green’s identity, we have U(x, t) ≤ M + ∥u0∥∞
2 + n

n−pC
pT

n−p
n

0 Mm
2 < M2.

Hence there is{
Ut ≥ Uxx + Cp(T − ε0 + T0 − t)−

p
nUm(x0(t), t) in R× (T − ε0, T − ε0 + T0),

U(x, T − ε0) = ũ0(x) in R.
On the other hand, we have{

ũt ≤ ũxx + Cp(T − ε0 + T0 − t)−
p
n ũm(x0(t), t) in R× (T − ε0, T − ε0 + T0),

ũ0(x, T − ε0) = ũ0(x) in R.

By the comparison principle, ũ ≤ U ≤ M2 in R× (T − ε0, T − ε0 + T0), then ṽ
blow up.

According to the continuity about initial data for bounded solutions, there
exists a neighborhood of (u0, v0) in V0 such that every solution (û, v̂) starting
from the neighborhood will enter N(u0, v0) at time T−ε0, and keeps the property
that v̂ blows up while û remains bounded. �
Lemma 4.4. Assume m > q + 1 and n > p. Then both non-simultaneous
blow-up and simultaneous blow-up may occur.

Proof. Assume (u0, v0) ∈ V0 such that the solution of (3) blows up. Then the
positive solution with initial data (u0/l, v0/(1 − l)) ∈ V0 for any l ∈ (0, 1) also
blows up. By Lemma 4.2, we know there exist some l1 near 0 such that u blows
up while v remains bounded if l = l1, and some l2 near 1 such that v blows
up while u remains bounded if l = l2, respectively. By Lemma 4.3, such sets
of initial data are open and connected. Then there exists some l ∈ (l1, l2) such
that simultaneous blow-up happens. �

Till now, the proof of Theorem 1.4 is finished.
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3. C. Brändle, F. Quirós and J.D. Rossi, The role of non-linear diffusion in non-simultaneous
blow-up, J. Math. Anal. Appl. 308 (2005), 92–104.



A note on the Cauchy problem for heat equations with coupling moving reactions 367

4. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ. 1964.

5. Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29

(1998), 1301–1334.
6. K. Bimpong-Bota, P. Ortoleva and J. Ross, Far-from-equilibrum phenomena at local sites

of reactions, J. Chem. Phys. 60 (1974), 3124–3133.
7. J.M. Chadam and H.M. Yin, A diffusion equation with localized chemical reactions, Proc.

Edinb. Math. Soc. 37 (1993), 101–118.
8. P. Ortaleva and J. Ross, Local structures in chemical reactions with heterogeneous catalysis,

J. Chem. Phys. 56 (1972), 4397–4400.
9. Ph. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with

nonlocal nonlinear source, J. Differential Equations 153 (1999), 374–406.
10. H.L. Li and M.X. Wang, Properties of blow-up solutions to a parabolic system with non-

linear localized termx, Discrete Continuous Dynam. Syst. 13 (2005), 683–700.
11. G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Pub-

lishing Co., Inc., River Edge, NJ. 1996.

Bingchen Liu received M.Sc. from Guangxi Normal University and Ph.D at Dalian Uni-
versity of Technology. Since 2006 he has been at China University of Petroleum. His research
interests include the singularity of solutions to parabolic equations.

College of Science, China University of Petroleum, Qingdao 266580, P.R. China.
e-mail: bcliu@aliyun.com

Fengjie Li received M.Sc. from Guangxi Normal University, and Ph.D. from Dalian Univer-
sity of Technology. She is currently an associate professor at China University of Petroleum

since 2006. Her research interests are the singularity and the asymptotic behaviour of solu-
tions to parabolic equations.

College of Science, China University of Petroleum, Qingdao 266580, P.R. China.
e-mail: fjli@upc.edu.cn


