• Title/Summary/Keyword: bivariate means

Search Result 25, Processing Time 0.027 seconds

ON A CLASS OF BIVARIATE MEANS INCLUDING A LOT OF OLD AND NEW MEANS

  • Raissouli, Mustapha;Rezgui, Anis
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.239-251
    • /
    • 2019
  • In this paper we introduce a new formulation of symmetric homogeneous bivariate means that depends on the variation of a given continuous strictly increasing function on (0, ${\infty}$). It turns out that this class of means includes a lot of known bivariate means among them the arithmetic mean, the harmonic mean, the geometric mean, the logarithmic mean as well as the first and second Seiffert means. Using this new formulation we introduce a lot of new bivariate means and derive some mean-inequalities.

COMPARISON STUDY OF BIVARIATE LAPLACE DISTRIBUTIONS WITH THE SAME MARGINAL DISTRIBUTION

  • Hong, Chong-Sun;Hong, Sung-Sick
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.107-128
    • /
    • 2004
  • Bivariate Laplace distributions for which both marginal distributions and Laplace are discussed. Three kinds of bivariate Laplace distributions which are extended bivariate exponential distributions of Gumbel (1960) are introduced in this paper. These symmetrical distributions are compared with asymmetrical distributions of Kotz et al. (2000). Their probability density functions, cumulative distribution functions are derived. Conditional skewnesses and kurtoses are also defined. Their correlation coefficients are calculated and compared with others. We proposed bivariate random vector generating methods whose distributions are bivariate Laplace. With sample means and medians obtained from generated random vectors, variance and covariance matrices of means and medians are calculated and discussed with those of bivariate normal distribution.

On the maximum and minimum in a bivariate uniform distribution

  • Lee, Changsoo;Shin, Hyejung;Moon, Yeung-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1495-1500
    • /
    • 2015
  • We obtain means and variances of max {X, Y} and min {X, Y} in the underlying Morgenstern type bivariate uniform variables X and Y with same scale parameters and different scale parameters respectively. And we obtain the conditional expectations in the underlying Morgenstern type bivariate uniform variables. Here, we shall consider the conditional expectations to know the dependence of one variable on the other variable and we consider the behaviors of means and variances of max {X, Y} and min {X, Y} with respect to changes in means, variances, and the correlation coeffcient of the underlying Morgenstern type bivariate uniform variables.

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

Some properties of reliability, ratio, maximum and minimum in a bivariate exponential distribution with a dependence parameter

  • Lee, Jang Choon;Kang, Jun Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.219-226
    • /
    • 2014
  • In this paper, we derived estimators of reliability P(Y < X) and the distribution of ratio in the bivariate exponential density. We also considered the means and variances of M = max{X,Y} and m = min{X,Y}. We finally presented how E(M), E(m), Var(M) and Var(m) are varied with respect to the ones in the bivariate exponential density.

Other approaches to bivariate ranked set sampling

  • Al-Saleh, Mohammad Fraiwan;Alshboul, Hadeel Mohammad
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.283-296
    • /
    • 2018
  • Ranked set sampling, as introduced by McIntyre (Australian Journal of Agriculture Research, 3, 385-390, 1952), dealt with the estimation of the mean of one population. To deal with two or more variables, different forms of bivariate and multivariate ranked set sampling were suggested. For a technique to be useful, it should be easy to implement in practice. Bivariate ranked set sampling, as introduced by Al-Saleh and Zheng (Australian & New Zealand Journal of Statistics, 44, 221-232, 2002), is not easy to implement in practice, because it requires the judgment ranking of each of the combination of the order statistics of the two characteristics. This paper investigates two modifications that make the method easier to use. The first modification is based on ranking one variable and noting the rank of the other variable for one cycle, and do the reverse for another cycle. The second approach is based on ranking of one variable and giving the second variable the same rank (Concomitant Order Statistic) for one cycle and do the reverse for the other cycle. The two procedures are investigated for an estimation of the means of some well-known distributions. It is show that the suggested approaches can be used in practice and can be more efficient than using SRS. A real data set is used to illustrate the procedure.

DEGREE OF APPROXIMATION FOR BIVARIATE SZASZ-KANTOROVICH TYPE BASED ON BRENKE TYPE POLYNOMIALS

  • Begen, Selin;Ilarslan, H. Gul Ince
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.251-268
    • /
    • 2020
  • In this paper, we estimate the degree of approximation by means of the complete modulus of continuity, the partial modulus of continuity, the Lipschitz-type class and Petree's K-functional for the bivariate Szász-Kantorovich operators based on Brenke-type polynomials. Later, we construct Generalized Boolean Sum operators associated with combinations of the Szász-Kantorovich operators based on Brenke-type polynomials. In addition, we obtain the rate of convergence for the GBS operators with the help of the mixed modulus of continuity and the Lipschitz class of the Bögel continuous functions.

Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events (독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간)

  • Yoo, Chul-Sang;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.137-146
    • /
    • 2011
  • In this study, annual maximum storm events are evaluated by applying the bivariate extremal distribution. Rainfall quantiles of probabilistic storm event are calculated using OR case joint return period, AND case joint return period and interval conditional joint return period. The difference between each of three joint return periods was explained by the quadrant which shows probability calculation concept in the bivariate frequency analysis. Rainfall quantiles under AND case joint return periods are similar to rainfall depths in the univariate frequency analysis. The probabilistic storm events overcome the primary limitation of conventional univariate frequency analysis. The application of these storm event analysis provides a simple, statistically efficient means of characterizing frequency of extreme storm event.