# SOME INEQUALITIES FOR BIVARIATE MEANS 

## Hongxia Du

Abstract. In the paper, some new inequalities for certain bivariate means are obtained, which extend some known results.

## 1. Introduction

The logarithmic and identric means of two positive numbers $a$ and $b$ are defined by

$$
L \equiv L(a, b)= \begin{cases}\frac{b-a}{\log b-\log a} & a \neq b \\ a & a=b\end{cases}
$$

and

$$
I \equiv I(a, b)= \begin{cases}\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)} & a \neq b \\ a & a=b\end{cases}
$$

respectively. Let

$$
A_{k} \equiv A_{k}(a, b)=\left(\frac{a^{k}+b^{k}}{2}\right)^{1 / k}
$$

denote the power mean of order $k \neq 0$ of $a$ and $b$. In particular, the arithmetic and geometric mean of $a$ and $b$ are

$$
A \equiv A_{1}(a, b)=\frac{a+b}{2}, \quad G \equiv \lim _{k \rightarrow 0} A_{k}(a, b)=\sqrt{a b}
$$

There are many remarkable inequalities and identities for all means defined above have been established and studied extensively by many researchers (see [1]-[15]).

For instance, Stolarsky [14] proved that for all $a \neq b$ one has

$$
A_{2 / 3}<I
$$

and that the order $2 / 3$ of the power mean is the best one. Bullen [2] obtained

$$
L<I<A
$$

Received March 18, 2009.
2000 Mathematics Subject Classification. 26D15, 26D99.
Key words and phrases. bivariate means, inequalities.

Sándor gave

$$
A<\frac{e}{2} I
$$

Neuman-Sándor [7] got

$$
I<\frac{2}{e}(A+G)
$$

and recently, Neuman-Sándor [7] proved the following companion inequalities,

$$
I<A<\frac{e}{2} I, \quad A_{2 / 3}<I<\frac{2 \sqrt{2}}{e} A_{2 / 3}
$$

where the constants above are best possible.
Next, we introduce the weighted geometric mean $S$ (see, e.g., $[8,9,12]$ ) of $a$ and $b$ with weights $a /(a+b)$ and $b /(a+b)$ :

$$
S \equiv S(a, b)=a^{a /(a+b)} b^{b /(a+b)} .
$$

The Heronian mean denoted by He (see [2]) and defined as follows

$$
H e \equiv H e(a, b)=\frac{a+\sqrt{a b}+b}{3}=\frac{2 A+G}{3} .
$$

Neuman-Sándor [7] obtained two companion inequalities

$$
H e<I<\frac{3}{e} H e, \quad \text { and } \quad A_{2}<S<\sqrt{2} A_{2} .
$$

In the present paper, we will establish some new inequalities for bivariate means which extend some known results.

## 2. Main results

In what follows, without loss of generality, we will assume that $b>a>0$.
Theorem 2.1. Let $0<k \leq 1$, then we have

$$
A_{k}(a, b)>a^{1-k} I\left(a^{k}, b^{k}\right)
$$

where the constant 1 is best possible.
Proof. Let $x=b / a$ and

$$
f(x)=\frac{A_{k}(x, 1)}{I\left(x^{k}, 1\right)}
$$

then we have

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =\frac{A_{k}^{\prime}(x, 1)}{A_{k}(x, 1)}-\frac{I^{\prime}\left(x^{k}, 1\right)}{I\left(x^{k}, 1\right)} \\
& =\frac{x^{k-1}}{x^{k}+1}+\frac{k x^{k-1}}{1-x^{k}}+\frac{k^{2} x^{k-1} \log x}{\left(1-x^{k}\right)^{2}} \\
& =\frac{x^{k-1}}{\left(1-x^{k}\right)^{2}\left(1+x^{k}\right)}\left[1+k+(1-k) x^{2 k}-2 x^{k}+k^{2}\left(x^{k}+1\right) \log x\right] .
\end{aligned}
$$

Let

$$
g(x)=1+k+(1-k) x^{2 k}-2 x^{k}+k^{2}\left(x^{k}+1\right) \log x
$$

then

$$
g^{\prime}(x)=\frac{k}{x}\left[2(1-k) x^{2 k}-(2-k) x^{k}+k^{2} x^{k} \log x+k\right] .
$$

Let

$$
h(x)=2(1-k) x^{2 k}-(2-k) x^{k}+k^{2} x^{k} \log x+k,
$$

then

$$
h^{\prime}(x)=k x^{k-1}\left[4(1-k) x^{k}-2(1-k)+k^{2} \log x\right] .
$$

For $0<k \leq 1, x>1$, it is easy to check that

$$
h^{\prime}(x)>0, \quad \lim _{x \rightarrow 1} h(x)=0
$$

which implies that

$$
g^{\prime}(x)>0, \quad \forall x>1
$$

By $g(1)=0$, we have $g(x)>0$. Then it follows that

$$
f^{\prime}(x)>0, \text { for } x>1,0<k \leq 1
$$

Thus $f(x)$ is strictly increasing and

$$
f(x)>\lim _{x \rightarrow 1} f(x)=1 .
$$

Moreover, as $x \rightarrow \infty$, we have

$$
\begin{equation*}
A_{k}(x, 1)=\frac{x}{2^{1 / k}}+o(x), \quad I\left(x^{k}, 1\right)=\frac{1}{e} x^{k}+o\left(x^{k}\right) \tag{2.1}
\end{equation*}
$$

then

$$
f(x)<\lim _{x \rightarrow \infty} f(x)=+\infty
$$

Since $f(x)$ is continuous for $x>1$, it follows that the constant 1 is best possible. Furthermore, by noting

$$
\begin{equation*}
A_{k}(x, 1)=\left(\frac{\left(\frac{b}{a}\right)^{k}+1}{2}\right)^{\frac{1}{k}}=\frac{1}{a}\left(\frac{b^{k}+a^{k}}{2}\right)^{\frac{1}{k}}=\frac{1}{a} A_{k}(a, b) \tag{2.2}
\end{equation*}
$$

and
(2.3) $I\left(x^{k}, 1\right)=\frac{1}{e}\left(\frac{1}{\left(\frac{b}{a}\right)^{k\left(\frac{b}{a}\right)^{k}}}\right)^{\frac{1}{1-\left(\frac{b}{a}\right)^{k}}}=\frac{1}{e}\left(\frac{b^{k b^{k}}}{a^{k a^{k}}}\right)^{\frac{1}{b^{k}-a^{k}}} \frac{1}{a^{k}}=\frac{1}{a^{k}} I\left(a^{k}, b^{k}\right)$,
the desired result can be obtained.
Remark 2.1. If taking $k=1$, then we have the following well-known inequality (e.g., [2])

$$
I(a, b)<A(a, b)
$$

Furthermore, from (2.1), we can obtain the following companion inequality (e.g., [7])

$$
I(a, b)<A(a, b)<\frac{e}{2} I(a, b)
$$

Theorem 2.2. Let $0 \leq k \leq 1 / 2$, we have

$$
A_{k}(a, b)<I(a, b)
$$

where the constant 1 is best possible.
Proof. Let $x=b / a$ and

$$
f(x)=\frac{A_{k}(x, 1)}{I(x, 1)}
$$

then we have

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =\frac{A_{k}^{\prime}(x, 1)}{A_{k}(x, 1)}-\frac{I^{\prime}(x, 1)}{I(x, 1)} \\
& =\frac{x^{k-1}}{x^{k}+1}+\frac{1}{1-x}+\frac{\log x}{(1-x)^{2}} \\
& =\frac{x^{k-1}-x^{k}+1-x+\log x+x^{k} \log x}{(1-x)^{2}\left(1+x^{k}\right)}
\end{aligned}
$$

Let $f_{1}(x)=x^{k-1}-x^{k}+1-x+\log x+x^{k} \log x$, then

$$
\begin{aligned}
f_{1}^{\prime}(x) & =(k-1) x^{k-2}+x^{-1}+x^{k-1}+k x^{k-1} \log x-1-k x^{k-1} \\
& =\frac{1}{x^{1-k}}\left\{1+k \log x+x^{-k}-k-(1-k) x^{-1}-x^{1-k}\right\} .
\end{aligned}
$$

In addition, let $f_{2}(x)=1+k \log x+x^{-k}-k-(1-k) x^{-1}-x^{1-k}$, then

$$
\begin{aligned}
f_{2}^{\prime}(x) & =\frac{k}{x}-k x^{-k-1}+(1-k) x^{-2}-(1-k) x^{-k} \\
& =k\left(\frac{1}{x}-\frac{1}{x^{k+1}}\right)-(1-k)\left(\frac{1}{x^{k}}-\frac{1}{x^{2}}\right) \\
& \leq(2 k-1)\left(\frac{1}{x}-\frac{1}{x^{k+1}}\right) \leq 0
\end{aligned}
$$

Since $f_{2}(1)=0$, then $f_{2}(x) \leq 0$, which implies $f_{1}{ }^{\prime}(x) \leq 0$ and $f^{\prime}(x) \leq 0$. Thus $f(x)$ is decreasing, and it follows that $f(x) \leq 1$ by $\lim _{x \rightarrow 1} f(x)=1$. The desired result can be obtained.

Theorem 2.3. Let $\beta \geq 2 / 3$, then for any $k>0$, we have

$$
H e\left(a^{k}, b^{k}\right)<A_{\beta}\left(a^{k}, b^{k}\right)<\frac{3}{2^{1 / \beta}} H e\left(a^{k}, b^{k}\right),
$$

where the constants 1 and $\frac{3}{2^{1 / \beta}}$ are best possible.
Proof. Let

$$
f(x)=\frac{H e\left(x^{k}, 1\right)}{A_{\beta}\left(x^{k}, 1\right)}
$$

then we have

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)} & =\frac{H e^{\prime}\left(x^{k}, 1\right)}{H e\left(x^{k}, 1\right)}-\frac{A_{\beta}^{\prime}\left(x^{k}, 1\right)}{A_{\beta}\left(x^{k}, 1\right)} \\
& =\frac{k x^{k-1}+\frac{k}{2} x^{\frac{k}{2}-1}}{x^{k}+x^{\frac{k}{2}}+1}-\frac{k x^{k \beta-1}}{1+x^{k \beta}} \\
& =\frac{k}{2}\left(\frac{2 x^{k-1}+x^{\frac{k}{2}-1}-x^{k(\beta+1 / 2)-1}-2 x^{k \beta-1}}{\left(x^{k}+x^{\frac{k}{2}}+1\right)\left(1+x^{k \beta}\right)}\right) \\
& =\frac{k}{2} \frac{x^{k-1}}{x^{k / 2}}\left(\frac{2 x^{k / 2}+1-x^{k \beta}-2 x^{k \beta-\frac{k}{2}}}{\left(x^{k}+x^{\frac{k}{2}}+1\right)\left(1+x^{k \beta}\right)}\right)
\end{aligned}
$$

Let

$$
g(x)=2 x^{k / 2}+1-x^{k \beta}-2 x^{k \beta-\frac{k}{2}}
$$

then it follows that

$$
\begin{aligned}
g^{\prime}(x) & =k\left[x^{\frac{k}{2}-1}-\beta x^{k \beta-1}-2\left(\beta-\frac{1}{2}\right) x^{k \beta-\frac{k}{2}-1}\right] \\
& =k x^{\frac{k}{2}-1}\left[1-\beta x^{k \beta-\frac{k}{2}}-2\left(\beta-\frac{1}{2}\right) x^{k \beta-k}\right] .
\end{aligned}
$$

Let

$$
h(x)=1-\beta x^{k \beta-\frac{k}{2}}-2\left(\beta-\frac{1}{2}\right) x^{k \beta-k}
$$

then

$$
\begin{aligned}
h^{\prime}(x) & =-k\left(\beta-\frac{1}{2}\right) x^{k \beta-k-1}\left(\beta x^{\frac{k}{2}}+2(\beta-1)\right) \\
& \leq-k\left(\beta-\frac{1}{2}\right) x^{k \beta-k-1}(\beta+2(\beta-1))
\end{aligned}
$$

If $\beta>2 / 3$, then $h^{\prime}(x)<0$. From above discussions, we have the following claims

$$
h(x)<h(1)=2-3 \beta<0, \quad g^{\prime}(x)<0, \quad g(x)<g(1)=0 .
$$

Hence, $f^{\prime}(x)<0$, and $f(x)$ is strictly decreasing for all $x>1$. If $\beta=2 / 3$, by similar discussion, $f(x)$ is strictly decreasing for all $x>1$. Furthermore, it is easy to check that

$$
\lim _{x \rightarrow 1} f(x)=1, \quad \text { and } \quad \lim _{x \rightarrow \infty} f(x)=\frac{2^{1 / \beta}}{3}
$$

which implies our result.
Remark 2.2. Here if taking $k=1$ and $\beta=2 / 3$, then we have the following known inequality [7],

$$
H e(a, b)<A_{2 / 3}(a, b)<\frac{3}{2 \sqrt{2}} H e(a, b) .
$$

Theorem 2.4. Let $1 \leq k \leq 2$, then we have

$$
A_{k}(a, b)<S<2^{1 / k} A_{k}(a, b)
$$

where the constants 1 and $2^{1 / k}$ are best possible.
Proof. Let

$$
f(x)=\frac{A_{k}(x, 1)}{S(x, 1)}
$$

then

$$
\begin{aligned}
& \frac{f^{\prime}(x)}{f(x)}=\frac{A_{k}^{\prime}(x, 1)}{A_{k}(x, 1)}-\frac{S^{\prime}(x, 1)}{S(x, 1)} \\
&=\frac{x^{k-1}}{x^{k}+1}-\frac{1}{1+x}-\frac{\log x}{(1+x)^{2}} \\
&=\frac{x^{k}+x^{k-1}-x-1-\left(1+x^{k}\right) \log x}{\left(x^{k}+1\right)(1+x)^{2}} \\
&=: \frac{g(x)}{\left(x^{k}+1\right)(1+x)^{2}}, \\
& g^{\prime}(x)=k x^{k-1}+(k-1) x^{k-2}-1-k x^{k-1} \log x-\frac{1+x^{k}}{x}
\end{aligned}
$$

and

$$
\begin{aligned}
g^{\prime \prime}(x) & =(k-1)(k-2) x^{k-3}+x^{k-2}\left[k^{2}-3 k+1-k(k-1) \log x\right]+\frac{1}{x^{2}} \\
& =x^{k-2}\left\{(k-1)(k-2) x^{-1}+\left[k^{2}-3 k+1-k(k-1) \log x\right]+x^{-k}\right\}
\end{aligned}
$$

Let

$$
h(x)=(k-1)(k-2) x^{-1}+\left[k^{2}-3 k+1-k(k-1) \log x\right]+x^{-k}
$$

then we have

$$
\begin{aligned}
h^{\prime}(x) & =-(k-1)(k-2) x^{-2}-k(k-1) x^{-1}-k x^{-k-1} \\
& =x^{-2}\left[-(k-1)(k-2)-k(k-1) x-k x^{-k+1}\right]=: x^{-2} l(x)
\end{aligned}
$$

and

$$
l^{\prime}(x)=k(k-1)\left(x^{-k}-1\right)
$$

By $1 \leq k \leq 2$ and $x>1$, we can get the following claims

$$
\begin{aligned}
& l^{\prime}(x)<0, \quad l(1)=-\left(2 k^{2}-3 k+2\right)<0, \quad h^{\prime}(x)<0 \\
& h(x)<h(1)=2\left(k^{2}-3 k+2\right) \leq 0, \quad g^{\prime \prime}(x)<0, \quad g^{\prime}(x)<g^{\prime}(1) \leq 0
\end{aligned}
$$

Thus, $g(x)$ is strictly decreasing and, by $g(1)=0$, we have $f^{\prime}(x)<0$ for all $x>1$, that is to say, $f(x)$ is strictly decreasing. Furthermore,

$$
\frac{1}{2^{1 / k}}=\lim _{x \rightarrow \infty} f(x)<f(x)<\lim _{x \rightarrow 1} f(x)=1
$$

which implies our result.

Remark 2.3. By taking $k=2$, we get the following know inequality [7],

$$
A_{2}(a, b)<S<\sqrt{2} A(a, b)
$$

## References

[1] H. L. Alzer and S.-L. Qiu, Inequalities for means in two variables, Arch. Math. (Basel) 80 (2003), 201-215.
[2] P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Acad. Publ., Dordrecht, 2003.
[3] Y. H. Kim and Th. M. Rassias, Properties of some mean values and functional equations, Pan American Math. J. 12 (2002), no. 1, 65-79.
[4] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[5] E. Neuman and J. Sándor, Inequalities involving Stolarsky and Gini means, Math. Pannon. 14 (2003), no. 1, 29-44.
[6] E. Neuman and J. Sándor, On certain means of two arguments and their extensions, Int. J. Math. Math. Sci. (2003), no. 16, 981-993.
[7] , Companion inequalities for certain bivariate means, Appl. Anal. Discrete Math. 3 (2009), no. 1, 46-51.
[8] J. Sándor, On the identric and logarithmic means, Aequationes Math. 40 (1990), 261270.
[9] $\qquad$ , A note on some inequalities for means, Arch. Math. (Basel) 56 (1991), 471-473.
[10] $\qquad$ , On certain inequalities for means, J. Math. Anal. Appl. 189 (1995), 602-606.
[11] $\qquad$ , On certain inequalities for means III, Arch. Math. (Basel) 76 (2001), 34-40.
[12] J. Sándor and I. Rasą, Inequalities for certain means in two arguments, Nieuw Arch. Wisk. 15 (1997), 51-55.
[13] J. Sándor and T. Trif, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci. 25 (2001), no. 8, 525-532.
[14] K. B. Stolarsky, The power and generalied logarithmic means, Amer. Math. Monthly 87 (1980), 545-548.
[15] G. Toader and Th. M. Rassias, New properties of some mean values, J. Math. Anal. Appl. 232 (1999), no. 2, 376-383.

College of Mathematics and Information Science
Henan Normal University
Henan Province, 453007, P. R. China
E-mail address: duhongxia24@gmail.com

