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DETECTABLE MEANS AND APPLICATIONS

Mustapha Räıssouli

Abstract. In this paper, we introduce a new concept for bivariate means

and we study its properties. Application of this concept for mean-inequal-

ities is also discussed. Open problems are derived as well.

1. Introduction

Mean-theory arises in various contexts and contributes as a good tool for
solving many scientific problems. It attracts many mathematicians by virtue of
its nice properties and various applications. By (bivariate) mean we understand
a binary map m between positive real numbers satisfying the following double
inequality:

∀a, b > 0 min(a, b) ≤ m(a, b) ≤ max(a, b).

Every mean satisfies m(a, a) = a for each a > 0. Two trivial means are
(a, b) 7−→ min(a, b) and (a, b) 7−→ max(a, b) and will be denoted by min and
max, respectively. Let p be a real number. The binomial power mean is defined
by

Ap =: Ap(a, b) =:
(ap + bp

2

)1/p
, p 6= 0.

This power mean includes some familiar means, namely (see [2] for instance
and the related references cited therein),

A =: A(a, b) =
a + b

2
= A1(a, b), G =: G(a, b) =

√
ab = lim

p→0
Ap(a, b),

H =: H(a, b) =
2ab

a + b
= A−1(a, b), Q =: Q(a, b) =

√
a2 + b2

2
= A2(a, b),

which are known as the arithmetic mean, the geometric mean, the harmonic
mean and the quadratic (or root-square) mean, respectively.
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There are other means of interest introduced in the literature. For instance,
the following

L =: L(a, b) =
b− a

ln b− ln a
, I =: I(a, b) = e−1

(
bb

aa

)1/(b−a)

,

P =: P (a, b) =
b− a

2 arcsin b−a
b+a

, T =: T (a, b) =
b− a

2 arctan b−a
b+a

,

M =: M(a, b) =
b− a

2 arcsinh b−a
b+a

,

with L(a, a) = I(a, a) = P (a, a) = T (a, a) = M(a, a) = a, are known as the
logarithmic mean, the identric mean [2], the first Seiffert mean [17], the second
Seiffert mean [18] and the Neuman-Sándor mean [8], respectively. Recently, the
three means P , T and M have been the subject of intensive research, because
of their interesting properties and nice relationships. For more details about
these means and their bounds in terms of the other familiar means, we refer
the reader to [3, 4, 6, 7, 9] and the related references cited therein.

A mean m is symmetric if m(a, b) = m(b, a) and homogeneous if m(ka, kb) =
k.m(a, b) for all a, b > 0 and k > 0. All the previous means are symmetric and
homogeneous. We say that m is monotone if it is non-decreasing with respect
to its each variables. For more detail about these concepts, see [13, 16] for
instance.

For two means m1 and m2 we write m1 ≤ m2 if and only if m1(a, b) ≤
m2(a, b) for every a, b > 0 and, m1 < m2 if and only if m1(a, b) < m2(a, b) for
all a, b > 0 with a 6= b. We say that m1 and m2 are comparable if one of the
two mean inequalities m1 ≤ m2 or m2 ≤ m1 holds. The previous means are
comparable with the following chain of inequalities

min < H < G < L < P < I < A < M < T < Q < max .

For a given mean m, we set m∗(a, b) =
(
m
(
a−1, b−1

))−1
, and it is easy to

see that m∗ is also a mean, called the dual mean of m. If m is symmetric and
homogeneous, then so is m∗ and in this case we have m∗(a, b) = ab/m(a, b).
Every mean m satisfies m∗∗ := (m∗)∗ = m and, if m1 and m2 are two means
such that m1 ≤ m2, then m∗1 ≥ m∗2. It is easy to see that A∗p = A−p for
any p ∈ R. In particular, min∗ = max and max∗ = min, the arithmetic and
harmonic means are mutually dual, i.e., A∗ = H, H∗ = A, and the geometric
mean is self-dual, i.e., G∗ = G.

2. Sub-stabilizability and super-stabilizability

This section is devoted to state briefly some needed topics. For the sake of
simplicity for the reader, we adopt throughout this paper the following defini-
tion for mean [5].
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Definition. A continuous positive real function m(a, b) for a, b > 0 is called a
symmetric homogeneous mean (or simply a mean) if m satisfies the following
conditions:

(i) m(a, b) = m(b, a).
(ii) m(ka, kb) = k.m(a, b) for any k > 0.
(iii) m(a, b) is non-decreasing in a (and in b).
(iv) min(a, b) ≤ m(a, b) ≤ max(a, b).

We now recall some basic concepts about means and some needed related
results. For more details, we refer the reader to [10,11,14].

Let m1,m2,m3 be three means. We set, for all a, b > 0,

R
(
m1,m2,m3

)
(a, b) = m1

(
m2

(
a,m3

)
,m2

(
m3, b

))
with m3 =: m3(a, b).

The mean m is called stable if R(m,m,m) = m. The two trivial means min
and max are stable.

If m1 and m2 are two nontrivial stable means such that R(m1,m,m2) = m,
then we say that m is (m1,m2)-stabilizable. Following [12], there exists one
and only one (m1,m2)-stabilizable mean, provided that m1 is a cross mean (see
[11] for the definition and more details).

If moreover m1 and m2 are comparable, we say that m is (m1,m2)-sub-
stabilizable if R(m1,m,m2) ≤ m and m is between m1 and m2, see [14]. If
this latter mean inequality is strict, then we say that m is strictly (m1,m2)-
sub-stabilizable. The super-stabilizability of m is defined in similar manner
(by reversing the previous mean inequalities). In short, we can say that m
is (m1,m2)-super-stabilizable if and only if m∗ is (m∗2,m

∗
1)-sub-stabilizable.

For more details about the concepts of sub-stabilizable and super-stabilizable
means we refer the reader to [14].

The following results will be also needed in the sequel.

Theorem 2.1 ([10,11]). The following assertions hold:
(i) For any p ∈ R, Ap is stable. In particular, A,H,G and Q are stable.
(ii) L is simultaneously (A,G)-stabilizable and (H,A)-stabilizable, while I is

(G,A)-stabilizable.

Theorem 2.2. The following assertions hold true:
(i) L is strictly (G,A)-super-stabilizable and strictly (A,H)-sub-stabilizable,

while I is strictly (A,G)-sub-stabilizable. See [14].
(ii) P is strictly (A,G)-sub-stabilizable and strictly (G,A)-super-stabilizable.

See [14] and [1], respectively.
(iii) M is strictly (A,Q)-super-stabilizable. See [15].
(iv) T is strictly (A,A3)-super-stabilizable. See [15].

3. Detectable means

We preserve the same notation as in the previous sections. Let m be a
mean. Assume that there exist two nontrivial stable means m1 and m2, with
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m1 < m2, and two stabilizable means m21 and m12, with m21 < m12, such
that

(1) m1 ≤ m21 ≤ m ≤ m12 ≤ m2.

Let us further consider the following statements:

(i) m21 is (m2,m1)-stabilizable,
(ii) m12 is (m1,m2)-stabilizable,
(iii) m is (m1,m2)-super-stabilizable and (m2,m1)-sub-stabilizable. That

is,

(2) R
(
m2,m,m1

)
≤ m ≤ R

(
m1,m,m2

)
.

(iv) m is (m1,m2)-sub-stabilizable and (m2,m1)-super-stabilizable. That
is,

(3) R
(
m1,m,m2

)
≤ m ≤ R

(
m2,m,m1

)
.

With this, we now may state the following definition.

Definition. (a) If the mean m satisfies (i), (ii) and (iii), then we say that m is
[ m1 m2
m2 m1

]-detectable. If the inequalities (1) and (2) are strict, then we say that
m is strictly [ m1 m2

m2 m1
]-detectable.

(b) If m satisfies (i), (ii) and (iv), then we say that m is [ m1 m2
m2 m1

]-detectable.
If (1) and (3) are strict, then we say that m is strictly [ m1 m2

m2 m1
]-detectable.

Example 3.1. (i) The logarithmic mean L is (A,G)-stabilizable and (G,A)-
super-stabilizable. Further, we can write

m1 = G < L = m21 ≤ L = m < I = m12 < A = m2,

with I is (G,A)-stabilizable. We can then say that L is [ G A
A G ]-detectable, but

not strictly.
(ii) The identric mean I is (G,A)-stabilizable and (A,G)-sub-stabilizable.

Here, we write

m1 = G < L = m21 < I = m ≤ I = m12 < A = m2,

with L is (A,G)-stabilizable. Then, I is [ G A
A G ]-detectable, but not strictly.

Example 3.2. The mean L is (H,A)-stabilizable and (A,H)-sub-stabilizable.
Writing

m1 = H < L∗ = m21 < L = m ≤ L = m12 < A = m2,

with L∗ is (A,H)-stabilizable, we then deduce that L is also [ H A
A H ]-detectable,

but not strictly.

Other more interesting examples of detectable means will be presented later.
The next result is immediate from the previous definition and its proof is there-
fore omitted here for the reader.
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Proposition 3.3. The next statements are equivalent:
(i) m is (strictly) [ m1 m2

m2 m1
]-detectable,

(ii) m∗ is (strictly)
[
m∗2 m∗1
m∗1 m∗2

]
-detectable.

Combining this latter proposition with Example 3.1 and Example 3.2, we
immediately deduce the following.

Example 3.4. L∗ is simultaneously (not strictly) [ H G
G H ]-detectable and [ H A

A H ]-
detectable, while I∗ is (not strictly) [ H G

G H ]-detectable. It follows that L and L∗

are both (not strictly) [ H A
A H ]-detectable.

Remark 3.5. The previous example brings us good and new information. In
fact, it asserts the two following assertions:

(i) A given mean could be [ m1 m2
m2 m1

]-detectable and [ m3 m4
m4 m3

]-detectable, for
some stable means m1 6= m3 and m2 6= m4.

(ii) Given two stable means m1 and m2, two different means could be both
[ m1 m2
m2 m1

]-detectable.

In [14], the authors proved that if a certain mean m is (A,G)-sub-stabilizable,
then L ≤ m ≤ A. We then deduce that the three means L, I and P could be
[ G A
A G ]-detectable, which is confirmed by Example 3.1 for L and I. For the mean
P , we have the following result.

Theorem 3.6. The first Seiffert mean P is strictly [ G A
A G ]-detectable.

Proof. First, we know that

m1 = G < L = m21 < P = m < I = m12 < A = m2,

with L is (A,G)-stabilizable and I is (G,A)-stabilizable. Further, following
Theorem 2.2(ii), P is strictly (A,G)-sub-stabilizable and strictly (G,A)-super-
stabilizable. The desired result follows. �

Now, a natural question arises from the above. Does exist a mean m which is
strictly [ A G

G A ]-detectable? Before giving an affirmative answer to this question,
we introduce a general point of view recited in the following definition.

Definition. Let m be a strictly [ m1 m2
m2 m1

]-detectable mean. We say that m is
reversible if there exists a mean which is strictly [ m2 m1

m1 m2
]-detectable.

It is easy to see that if m is (m1,m2)-reversible, then m∗ is (m∗2,m
∗
1)-

reversible. A detectable mean m is not (m1,m2)-reversible, with m1 < m2,
means that one of the two following statements holds true:
• m is strictly [ m1 m2

m2 m1
]-detectable and there is no mean which is strictly

[ m2 m1
m1 m2

]-detectable.
• m is strictly [ m2 m1

m1 m2
]-detectable and there is no mean which is strictly

[ m1 m2
m2 m1

]-detectable.
The following result explains more this latter situation and answers affirma-

tively the previous question.
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Theorem 3.7. The mean P is not (G,A)-reversible. That is, there is no mean
m which is strictly [ A G

G A ]-detectable.

Proof. Assume that P is (G,A)-reversible. Since P is strictly [ G A
A G ]-detectable

we then must show that there is no mean m which is strictly [ A G
G A ]-detectable.

Assume that such mean m exists. By definition, m should satisfies

L < m < I and R
(
G,m,A

)
< m < R

(
A,m,G

)
.

The inequalities m < R
(
A,m,G

)
means that

m(a, b) < R
(
A,m,G

)
(a, b) = A

(√
a,
√
b
)
m
(√

a,
√
b
)

for all a, b > 0, a 6= b. By a mathematical induction we then deduce (for
a, b > 0, a 6= b)

m(a, b) < m
(
a1/N , b1/N

) N∏
n=1

A
(
a1/2

n

, b1/2
n
)

≤ max
(
a1/N , b1/N

) N∏
n=1

A
(
a1/2

n

, b1/2
n
)

for all integer N ≥ 1. Letting N →∞ in this latter inequality we then obtain

m(a, b) ≤
∞∏

n=1

A
(
a1/2

n

, b1/2
n
)
.

This, with the relationship, [13]

L(a, b) =

∞∏
n=1

A
(
a1/2

n

, b1/2
n
)
,

yields m ≤ L. This contradicts L < m and the proof is complete. �

Corollary 3.8. P ∗ is strictly [ H G
G H ]-detectable and P ∗ is not (H,G)-reversible.

Proof. It follows from Proposition 3.3 when combined with Theorem 3.6 and
Theorem 3.7, respectively. �

From the previous study it is natural to arise the following question:

Question. Are the means T and M strictly detectable? Are T and/or M
reversible?

About this, no affirmative answer at the moment and we state the following
conjecture.

Conjecture. The means T and M are mutually (A,Q)-reversible. Precisely,

M is strictly
[
A Q
Q A

]
-detectable while T is strictly

[
Q A
A Q

]
-detectable.
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4. Application for mean-inequalities

In this section, we will show that how the detectability concept can be used
as tool for refining some mean-inequalities. For the sake of simplicity, we denote
by m := m12 (resp. m = m21) the unique mean m which is (m1,m2)-stabilizable(
resp. m is (m2,m1)-stabilizable

)
. We first state the following result which is

of interest.

Theorem 4.1. Let m1,m
′
,m,m

′′
,m2 be strictly non-decreasing means such

that

(4) m1 < m
′
< m < m

′′
< m2.

Assume that further the following assertions are satisfied:

(i) m1 and m2 are non trivial stable means.
(ii) m is strictly (m2,m1)-sub-stabilizable and strictly (m1,m2)-super-stab-

ilizable.

Then we have

m1 < R
(
m1,m

′
,m1

)
< R

(
m2,m

′
,m1

)
< R

(
m2,m,m1

)
< m

< R
(
m1,m,m2

)
< R

(
m1,m

′′
,m2

)
< R

(
m2,m

”,m2

)
< m2.

(5)

Proof. Since m1 is stable and all involved means are strictly non-decreasing
then we have, with (4),

m1 = R
(
m1,m1,m1

)
< R

(
m1,m

′
,m1

)
< R

(
m2,m

′
,m1

)
< R

(
m2,m,m1

)
.

This, with the fact that m is strictly (m2,m1)-sub-stabilizable, yields the mean-
inequalities at left of m in (5). The mean-inequalities at right of m in (5) can
be proved in a similar manner. �

Theorem 4.1 stems its importance in the fact that the means m
′

and m
′′

can be chosen in a large spectrum, since they only satisfy (4) without any more
condition. In particular, we have the following corollary.

Corollary 4.2. Let m
′

and m
′′

be two strictly non-decreasing means such that

G < m
′
< P < m

′′
< A.

Then the following chain of inequalities holds

G < R
(
G,m

′
, G
)
< R

(
A,m

′
, G
)
< R

(
A,P,G

)
< P

< R
(
G,P,A

)
< R

(
G,m

′′
, A
)
< R

(
A,m

′′
, A
)
< A.

Using the detectability concept, the following corollary is immediate from
the above.

Corollary 4.3. Let m be a strictly [ m1 m2
m2 m1

]-detectable mean. Assume that m1

and m2 are strictly non-decreasing. Then we have

m1 < R
(
m1,m21,m1

)
< m21 < R

(
m2,m,m1

)
< m
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< R
(
m1,m,m2

)
< m12 < R

(
m2,m12,m2

)
< m2,

which refine the mean-inequalities m1 < m21 < m < m12 < m2.

In order to illustrate the previous theoretical results we present the following
example.

Example 4.4. The following chain of inequalities is well-known, see [3, 4, 14]
for instance.

G < L2 := (AL)1/2 < P < A2/3 < A.

According to Corollary 4.2 we have

G < R
(
G,L2, G

)
< R

(
A,L2, G

)
< R

(
A,P,G

)
< P

< R
(
G,P,A

)
< R

(
G,A2/3, A

)
< R

(
A,A2/3, A

)
< A.

We can compute all sides of the previous inequalities by referring to the defi-
nition of R. For instance, simple computations lead to

R
(
G,L2, G

)
=
(
GL
)1/2

, R
(
A,L2, G

)
=
(
A1/2L

)1/2
and

R
(
G,A2/3, A

)
=

(
G4/3 + A4/3 +

(
A.A2/3

)2/3
4

)3/4

.
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