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Abstract
Ranked set sampling, as introduced by McIntyre (Australian Journal of Agriculture Research, 3, 385–390,

1952), dealt with the estimation of the mean of one population. To deal with two or more variables, different
forms of bivariate and multivariate ranked set sampling were suggested. For a technique to be useful, it should be
easy to implement in practice. Bivariate ranked set sampling, as introduced by Al-Saleh and Zheng (Australian &
New Zealand Journal of Statistics, 44, 221–232, 2002), is not easy to implement in practice, because it requires
the judgment ranking of each of the combination of the order statistics of the two characteristics. This paper
investigates two modifications that make the method easier to use. The first modification is based on ranking
one variable and noting the rank of the other variable for one cycle, and do the reverse for another cycle. The
second approach is based on ranking of one variable and giving the second variable the same rank (Concomitant
Order Statistic) for one cycle and do the reverse for the other cycle. The two procedures are investigated for an
estimation of the means of some well-known distributions. It is show that the suggested approaches can be used
in practice and can be more efficient than using SRS. A real data set is used to illustrate the procedure.

Keywords: ranked set sampling, simple random sampling, bivariate ranked set sampling, bivariate
normal distribution, Downton’s bivariate exponential distribution, concomitant variable

1. Introduction

Statistics is the science of collecting data from a population sample to make an inference about the
population. The accuracy of the inference depends on the representativeness of the sample to the
population, which is frequently controlled by the size of the sample and the technique used to select
it. There are several sampling techniques available for obtaining data with informative image of the
large population of interest.

Simple random sampling is the basic method for almost all other sampling techniques. If a sample
of size n is drawn from a population of size N (finite population) in such a way that every possible
sample of size n has the same chance of being selected, then the sample is called a simple random
sample (SRS); the probability of any sample of size n to be the chosen sample is 1/

(
N
n

)
. As a conse-

quence of the definition, all elements of the population have the same inclusion probability, (= n/N).
For details about other well-known sampling techniques (Scheaffer et al., 2011).

Ranked set sampling (RSS) was first proposed by McIntyre (1952). This technique of data col-
lection is suitable for situation where taking actual measurements for sample observations is difficult
(costly and time-consuming) as compared to the judgment ranking of them. The ranked set sampling
technique can be executed as:
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1. Randomly draw m SRSs each of size m from the population of interest.

2. The elements within each set are ranked from lowest to largest by judgment with respect to the
variable of interest. It is assumed that each element can be ranked visually or by a negligible cost
method that does not require actual quantification.

3. From the tth set, take for actual quantification the element (judgment) ranked as tth the order statis-
tic.

4. Repeat Steps 1–3 r times (cycles), if necessary, to obtain a RSS of size n = rm units.

The observations of this sample can be denoted by {X( j)
(i:m) : j = 1, 2, . . . , r, i = 1, 2, . . . ,m} where

X( j)
(i:m) is the tth order statistic from the tth set of size m in the jth cycle. When sampling from an

infinite population with underlying probability density function (pdf), f , and absolutely continuous
cumulative distribution function (cdf), F, then for each i, X(1)

(i::m), X
(2)
(i:m), . . . , X

(r)
(i:m) are independently

and identically distributed (iid) f(i:m) with mean µ(i:m) and variance σ2
(i:m), while, for each j, X( j)

(1:m),

X( j)
(2:m), . . . , X

( j)
(m:m) are only independent. The pdf of the tth order statistic is

f(i:m) (x)=
m!

(i − 1)!(m − i)!
F i−1(x)[1 − F(x)]m−i f (x).

In McIntyre’s RSS procedure, it is assumed that the researcher could order a set of size units
with respect to the characteristic of interest with perfect ranking. He claimed (without proof) that
the mean of the ranked set sampling µ̂RSS = (1/(mr))

∑r
j=1

∑m
i=1 X( j)

(i:m), is an unbiased estimator of the
population mean µ regardless of any error in judgment ranking, and in a special unimodal distribution
the mean of such a sample is nearly (m + 1) /2 times as efficient as the mean of a simple random
sample, µ̂SRS = (1/n)

∑m
j=1 X j. The supporting mathematical theory of RSS was provided by Takahasi

and Wakimoto (1968). They showed that:
m∑

i=1

f(i:m)) (x) = f (x),
m∑

i=1

µ(i:m) = mµ, and mσ2 =

m∑
i=1

σ2
(i:m) +

m∑
i=1

(
µ(i:m) − µ

)2 .

Based on these identities, µ̂RSS is an unbiased estimator of µ and has smaller variance than µ̂SRS.
They also established the following inequalities for the efficiency of µ̂RSS with respect to µ̂SRS, MSE
is mean squared error:

1 ≤ eff (µ̂RSS; µ̂SRS) =
MSE(µ̂SRS)
MSE(µ̂RSS)

≤ m + 1
2

.

The upper bound is achieved if the underlying distribution is uniform and the lower bound is
achieved if it is degenerate.

Al-Saleh and Al-Kadiri (2000) introduced the double ranked set sampling method (DRSS) as a
procedure that increases the efficiency of RSS without increasing the set size m. Al-Saleh and Al-
Omari (2002) introduced the multistage ranked set sampling (MSRSS) method as a generalization on
DRSS method. The efficiency of estimators using MSRSS for all distributions is found to be between
1 and m2.

Moving extreme ranked set sampling (MERSS) is a modification of the usual RSS technique. It
was introduced by Al-Odat and Al-Saleh (2001) and investigated further by Al-Saleh and Al-Hadrami
(2003a, 2003b). In this procedure, only the extremes values of sets of varied size are identified by
judgment. Unlike RSS, MERSS allows for an increase of set size m without introducing too much
ranking error.
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1.1. Bivariate ranked set sampling

In many real applications such as agriculture or medicine, two variables are closely related and one
of them is easy to measure. Stokes (1977) studied RSS with concomitant variables, she assumed
that each sampling unit have a bivariate response where X is the character of interest and Y is the
concomitant variable that can be easily measured; ranking the variable X can be done according
to the variable Y . Several authors have considered estimating bivariate characteristics using RSS.
McIntyre (1952) suggested applying the RSS procedure to a single selected characteristic and making
an assumption regarding the performance of the method for the other characteristics. Patil et al. (1994)
investigated two different approaches for dealing with multiple characteristics. In the first approach,
as in McIntyre, units were ranked by judgment with respect to one chosen characteristic, and all other
characteristics were given the same ranking order as the ranked characteristic. The second approach
was based on the concept of size biased permutation. This approach allowed the ranking of units to
depend upon several or all characteristics collectively (Norris et al., 1995).

A multivariate version of RSS was introduced by Al-Saleh and Zheng (2002a). For simplicity, the
procedure was introduced for two characteristics and referred to it as ‘Bivariate ranked set sampling
(BVRSS)’. The following steps describe a BVRSS procedure:

1. For a given set size m identify a random sample of size m4 from the population and randomly
allocate it into m2 pools of size m2 each, where each pool is a square matrix with m rows and m
columns.

2. In the first pool, identify the minimum value by judgment with respect to the first characteristic,
for each of the m rows.

3. For the m minima obtained in Step 2, choose the pair that corresponds to the minimum value of the
second characteristic, identified by judgment, for actual quantification. This pair, which resembles
the label (1, 1), is the first element of the BVRSS sample.

4. Repeat Steps 2 and 3 for the second pool, but for actual quantification choose the pair that corre-
sponds to the first minimum value with respect to the first characteristic and the second minimum
value with respect to the second characteristic. This pair resembles the label (1, 2).

5. Continue the process until the label (m,m) is resembled from the m2 (last) pool.

This procedure produces a BVRSS sample of size m2.
Ridout (2003) considered several techniques that deals with taking RSS from a population, when

we have to deal with multiple characteristics, one method is similar to one of the two methods that
we will investigate. His investigation was based on simulation from bivariate normal distribution.
Samawi and Al-Saleh (2007) studied relative performance of BVRSS, with respect to RSS and SRS,
and investigated the estimation of the population mean using ratio and regression methods. Al-Saleh
and Diab (2009) used RSS to estimate the parameters of Downton’s bivariate exponential distribution
using MERSS with concomitant variable. For more work on RSS see Al-Saleh and Al-Kadiri (2000),
Hanandeh and Al-Saleh (2013), Al-Saleh and Zheng (2002b), Al-Saleh and Diab (2009), Al-Saleh and
Al-Ananbeh (2007), Al-Saleh and Na’amneh (2014) and Al-Saleh and Aldarabseh (2017), Zamanzade
and Mohammadi (2016), Al-Omari and Al-Saleh (2009), Al-Saleh and Ababneh (2015).

BVRSS as introduced by Al-Saleh and Zheng (2002b) can sometimes be difficult to implement in
practice. This paper introduces and investigates two modifications of BVRSS. The first modification
is the content of Section 2, and the second modification is the content of Section 3. An actual data set
is used for illustration. Conclusions and some possible future works are given in Section 4.
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Table 1: A numerical example of the modification with m = 3

(X,Y) (X,Y) (X,Y) Steps 1, 2, 3
(50, 143) (81, 169) (72, 176) −→ (50, 143)

Cycle 1 (77, 181) (67, 158) (64, 177) −→ (67, 158)
(43, 147) (62, 155) (55, 163) −→ (62, 155)

(X,Y) (X,Y) (X,Y) Steps 4, 5, 6
(52, 148) (83, 160) (49, 150) −→ (52, 148)

Cycle 2 (85, 189) (75, 169) (71, 188) −→ (71, 188)
(59, 171) (48, 154) (76, 174) −→ (76, 174)

2. First modification

2.1. First modification of BVRSS (MBVRSS1)

Suppose (X,Y) is a bivariate random vector with pdf f (x, y). The first suggested approach to obtain a
BVRSS can be explained as:

1. Randomly draw a SRS of size from the population of interest; denote the elements of the chosen
sample by (X(1)

1 ,Y (1)
1 ), (X(1)

2 ,Y (1)
2 ), . . . , (X(1)

m ,Y (1)
m ). Then, identify the minimum with respect to the

X-variable and note the rank of the other variable. Denote the identified element by (X(1)
(1) ,Y

(1)
( j1))

where j1 = 1, 2, . . . ,m.

2. Randomly draw another SRS of size , and identify the second minimum with respect to X-variable
and note the rank of other variable. Denote the identified element by (X(2)

(2) , Y
(2)
( j2)), j2 = 1, 2, . . . ,m.

3. The process is continued until we identify the maximum with respect to X-variable and note the
rank of the other variable for a SRS of size m. Denote the identified element by (X(m)

(m) ,Y
(m)
( jm)),

jm = 1, 2, . . . ,m.

4. Randomly draw a SRS of size m from the population of interest (X(1)∗
1 ,Y (1)∗

1 ), (X(1)∗
2 ,Y (1)∗

2 ), . . . ,
(X(1)∗

m ,Y (1)∗
m ) then identify the minimum with respect to the Y-variable and note the rank of the

other variable; denote the identified element by (X(1)∗
(i1) ,Y

(1)∗
(1) ) where i1 = 1, 2, . . . ,m.

5. Randomly draw another SRS of size m and identify the second minimum with respect to the Y-
variable and note the rank of the other variable; denote the identified element by (X(2)∗

(i2) ,Y
(2)∗
(2) ) where

i2 = 1, 2, . . . ,m.

6. The process is continued until we identify the maximum w.r.t. Y-variable and note the rank of other
variable for a SRS of size m, i.e., (X(m)∗

(m2) ,Y
(m)∗
(m) ), im = 1, 2, . . . ,m.

Steps 1–3 make up the first cycle while steps 4–6 make up the second cycle.
The elements of the set {(X(k)

(ik),Y
(k)
( jk)), (X

(k)∗
(ik) ,Y

(k)∗
( jk) ); k = 1, 2, . . . ,m} are the elements of a MBVRSS1

of size 2m. Cycle 1 and 2 can be repeated r times if needed to obtain a MBVRSS1 of size n = 2rm.
Table 1 illustrates the above procedure by a numerical example with m = 3. The MBVRSS1 of size 6
is {(50, 143), (67, 158), (62, 155), (52, 148), (71, 188), (76, 174)}.

2.2. Estimation of the population mean using MBVRSS1

Assume that {(X(k)
(ik), Y

(k)
( jk)), (X

(k)∗
(ik) ,Y

(k)∗
( jk) ); k = 1, 2, . . . ,m} is a MBVRSS1 of size 2m from f (x, y). Let

µx, µy, σx, σy, and ρ be the mean of X, the mean of Y, the variance of X, the variance of Y and the
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correlation between X and Y , respectively. We want to use the overall mean to estimate µx (for
simplicity, we redenote it by µ). For a given (i1, i2, . . . , im), let

µ̂ =

∑m
k=1 X(k)

(k) +
∑m

k=1 X(k)∗
(ik)

2m
.

From Takahasi and Wakimoto (1968), we have
∑m

k=1 f(k)(x) = m f (x). Thus, E(
∑m

k=1 X(k)
(k)) =

m
∫ ∞
−∞ x f (x)dx = mµ, E(

∑m
k=1 X(k)∗

(ik) ) =
∑m

k=1 µ(ik). Therefore, E(µ̂) = (µ/2)+ (1/2m)
∑m

k=1 µ(ik). Thus, µ̂
can be a biased estimator. The estimator is unbiased if ik = k for k = 1, 2, . . . ,m. Also,

MSE(µ̂) = Var (µ̂) + (Bias(µ̂))2 =
1

4m2

 m∑
k=1

σ2
(k) +

m∑
k=1

σ2
(ik)

 + −µ2 + 1
2m

m∑
k=1

µ(ik)

2

.

Also, from Takahasi and Wakimoto (1968), we have
∑m

k=1 σ
2
(k) = mσ2 −∑m

k
(
µ(k) − µ

)2 . Thus,

MSE(µ̂) =
1

4m2

mσ2 −
m∑
k

(
µ(k) − µ

)2
+

m∑
k=1

σ2
(ik)

 + −µ2 + 1
2m

m∑
k=1

µ(ik)

2

.

Let X1, X2, . . . , X2m is a SRS with common pdf f (x). Let µ̂SRS =
∑2m

k=1 Xk/(2m), then, then effi-
ciency of µ̂ w.r.t. µ̂SRS for a given (i1, i2 . . . , im) is

eff (µ̂; µ̂SRS) =
σ2

1
2m

[
mσ2 −∑m

k=1
(
µ(k) − µ

)2
+

∑m
k=1 σ

2
(ik)

]
+ 2m

(
− µ2 +

1
2m

∑m
k=1 µ(ik)

)2 .

2.3. Efficiency of the MBVRSS1 for some specific distributions

In this subsection, we will investigate the performance of this MBVRSS method for estimating the
mean of the uniform, exponential & normal marginal distributions.

• Uniform distribution: Let X1, X2, . . . , X2m be a SRS from U(0, θ), with pdf f (x) and cdf F(x):

f (x) =


1
θ
, if 0 < x ≤ θ,

0, otherwise,
F(x) =


0, x < 0,
x
θ
, 0 ≤ x ≤ θ,

1, x ≥ θ.

The pdf of the kth order statistic, X(k), of a SRS of size m is f(k)(x) = m!/{(k−1)!(m−k)!}(x/θ)k−1(1−
x/θ)m−k(1/θ). It can be shown that X(k)/θ has the beta distribution with α = k and β = m− k+ 1. Thus,
E(X(k)) = µ(k) = {α/(α + β)}θ = {k/(m + 1)}θ and Var(X(k)) = σ2

(k) = [αβ/{(α + β)2(α + β + 1)}]θ2 =

[k(m − k + 1)/{(m + 1)2(m + 2)}]θ2. For uniform distribution, U(0, θ), we have E(X) = µ = θ/2,
Var(X) = σ2 = θ2/12. Thus, E(µ̂SRS) = θ/2 and Var(µ̂SRS) = θ2/(24m). Therefore, the efficiency of µ̂
w.r.t. µ̂SRS for a given (i1, i2, . . . , im) is

eff (µ̂; µ̂SRS) =
σ2

6
m

[
m
12 −

∑m
k=1

(
k

m+1 −
1
2

)2
+

∑m
k=1 σ

2
(ik)

]
+ 24m

(
− 1

4 +
1

2m
∑m

k=1
ik

m+1

)2
.
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Table 2: The eff(µ̂; µ̂SRS) for uniform distribution

m = 2 Efficiency m = 3 Efficiency m = 4 Efficiency
i1 = i2 = 1 1.00 i1 = i2 = i3 = 1 0.63 i1 = i2 = i3 = i4 = 1 0.40
i1 = 1, i2 = 2 1.50 i1 = 1, i2 = 2, i3 = 3 2.00 i1 = 1, i2 = 2, i3 = 3, i4 = 4 2.50
i1 = i2 = 2 1.00 i1 = 3, i2 = i3 = 2 1.54 i1 = i2 = 3, i3 = 4, i4 = 1 2.17

i1 = i2 = i3 = 3 0.63 i1 = i2 = i3 = i4 = 4 0.40

The values of eff(µ̂; µ̂SRS) for some values of m and (i1, i2, . . . , im), are given in Table 2. The best
case then occurs when ik = k for k = 1, 2, . . . ,m. In this case, eff(µ̂; µ̂SRS) when m = 2, 3, 4 are
respectively, 1.50, 2.00, and 2.50. These are the same values for the efficiency (eff) of the usual RSS
with set size m and sample size m. The efficiency is highly depends on the value of ik, which highly
depends on the relation between the two variables.

• Exponential distribution: Let X1, X2, . . . , X2m be a SRS from exp(θ), with pdf f (x) and cdf F(x):

f (x) =


1
θ

e−
x
θ , if x ≥ 0,

0, otherwise,
F(x) =

{
0, x < 0,
1 − e−

x
θ , x ≥ 0.

The pdf of the kth order statistic of a random sample of size m is:

f(k)(x) =
m!

(k − 1)! (m − k)!

(
1 − e−

x
θ

)k−1 (
e−

x
θ

)m−k 1
θ

e−
x
θ , x ≥ 0.

If X is exp(θ), then X/θ is exp(1); E(X) = µ = θ and Var(X) = σ2 = θ2. Thus, E(µ̂SRS) = θ/2 and
Var(µ̂SRS) = θ2/2m.

E(X(k)) = µ(k) =

∫ ∞

0
x f(k)(x)dx =

∫ ∞

0

x
θ

m!
(k − 1)! (m − k)!

(
1 − e−

x
θ

)k−1 (
e−

x
θ

)m−k+1
dx.

The above integral can be evaluated for each value of k using Scientific Work Place package. Also,

MSE(µ̂) =
1

4m2

mθ2 −
m∑

k=1

(
µ(k) − θ

)2
+

m∑
k=1

σ2
(ik)

 + − θ2 + 1
2m

m∑
k=1

µ(ik)

2

.

Thus, the efficiency of µ̂ with respect to µ̂SRS for estimating the mean of exponential distribution is

eff(µ̂; µ̂SRS) =
1

1
2m

[
m −∑m

k=1
(
µ(k) − 1

)2
+

∑m
k=1 σ

2
(ik)

]
+ 2m

(
− 1

2 +
1

2m
∑m

k=1 µ(ik)

)2 .

For example, if m = 2, then µ(1) = 0.5, µ(2) = 1.5, σ2
(1) = 0.25, σ2

(2) = 1.25. Thus, eff(µ̂; µ̂SRS) =
4/3. The values of eff(µ̂; µ̂SRS) for some values of m and (i1, i2, . . . , im) are given in Table 3. The
comments on this table are similar to those on Table 2.

• Normal distribution: Let X1, X2, . . . , X2m be a SRS from N(µ, σ2) with pdf f (x) and cdf F(x) :

f (x) =
1

σ
√

2π
e
−1

2σ2 (x−µ)2

=
1
σ
ϕ
( x − µ
σ

)
, F(x) = Φ

( x − µ
σ

)
, −∞ < x < ∞.
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Table 3: The eff(µ̂; µ̂SRS) for exponential distribution

m = 2 Efficiency m = 3 Efficiency m = 4 Efficiency
i1 = i2 = 1 1.33 i1 = i2 = i3 = 1 0.97 i1 = i2 = i3 = i4 = 1 0.71
i1 = 1, i2 = 2 1.33 i1 = 1, i2 = 2, i3 = 3 1.64 i1 = 1, i2 = 2, i3 = 3, i4 = 4 1.92
i1 = i2 = 2 0.80 i1 = 3, i2 = i3 = 2 1.44 i1 = i2 = 3, i3 = 4, i4 = 1 1.71

i1 = i2 = i3 = 3 0.49 i1 = i2 = i3 = i4 = 4 0.30

Table 4: The eff(µ̂; µ̂SRS) for normal distribution

m = 2 Efficiency m = 3 Efficiency m = 4 Efficiency
i1 = i2 = 1 1.00 i1 = i2 = i3 = 1 0.62 i1 = i2 = i3 = i4 = 1 0.30
i1 = 1, i2 = 2 1.47 i1 = 1, i2 = 2, i3 = 3 1.91 i1 = 1, i2 = 2, i3 = 3, i4 = 4 2.35
i1 = i2 = 2 1.00 i1 = 3, i2 = i3 = 2 1.60 i1 = i2 = 3, i3 = 4, i4 = 1 1.94

i1 = i2 = i3 = 3 0.62 i1 = i2 = i3 = i4 = 4 0.39

The pdf of the kth order statistic of a random sample of size m is

f(k)(x) =
m!

(k − 1)! (m − k)!

(
Φ

( x − µ
σ

))k−1 (
1 − Φ

( x − µ
σ

))m−k 1
σ
ϕ
( x − µ
σ

)
.

Thus,

MSE(µ̂) =
1

4m2

mσ2 −
m∑

k=1

(
µ(k) − µ

)2
+

m∑
k=1

σ2
(ik)

 + −µ2 + 1
2m

m∑
k=1

µ(ik)

2

.

The value of efficiency of normal distribution does not depend on the parameters µ and σ2, so we
can find µ(k) based on standard normal distribution. Thus,

eff(µ̂; µ̂SRS) =
1

1
2m

[
m −∑m

k=1 µ
2
(k) +

∑m
k=1 σ

2
(ik)

]
+ 2m

(
1

2m
∑m

k=1 µ(ik)

)2 .

The values of eff(µ̂; µ̂SRS) for some values of m and (i1, i2, . . . , im) are given in Table 4. Again, the
best scenario occurs when ik = k for k = 1, 2, . . . ,m.

2.4. Overall performance of the proposed BVRSS

In the previous subsection, the efficiency was investigated for some specific values of (i1, i2, . . . , im).
In general, i1, i2, . . . , im are independent random variables, with ik = 1, 2, . . . ,m. The best case as seen
is ik = k, k = 1, 2, . . . ,m, which occurs when the two variables of interest are highly correlated. In
this extreme case, we have two RSS each of size m. So, in this case if we use X(k)

(k) , X
(k)∗
(ik) to estimate µ,

then

µ̂ =

∑m
k=1 X(k)

(k) +
∑m

k=1 X(k)∗
(ik)

2m
;

E(µ̂) =
1

2m

 m∑
k=1

E
(
X(k)

(k)

)
+

m∑
k=1

E
(
X(k)∗

(ik)

) = 1
2m

(mµ + mµ) = µ;
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Table 5: The efficiency in general with the best and worst cases eff(µ̂; µ̂SRS)

m 2 3 4 5 6 General m
Best case 1.5 2.00 2.50 3.0 3.50 (m + 1) /2

Worst case 1.2 1.33 1.43 1.5 1.56 (2m + 2) / (m + 3)

thus, µ̂ is an unbiased estimator of µ. Also,

Var(µ̂) =
1
4

(
Var

(
µ̂RSS

)
+ Var

(
µ̂∗RSS

))
=

1
2

Var (µ̂RSS) .

µ̂RSS is the estimator of based on RSS of size m. Thus, the efficiency of µ̂ w.r.t. µ̂SRS for estimating
the mean is

eff (µ̂; µ̂SRS) =
σ2/2m

0.5Var (µ̂RSS)
=

σ2/m
Var (µ̂RSS)

= eff,

which is the efficiency of RSS of size m w.r.t. SRS of the same size. It is well known in this case
that 1≤ eff(µ̂; µ̂SRS) ≤ (1/2)(m + 1); this means the number of cycles has no effect on the efficiency.
The worst case occurs when there is no relation between the two variables; for this case P(i1 = 1) =
P(i2 = 2) = · · · = P(ik = k) = 1/m, for k = 1, 2, . . . ,m. The resulting sample consists of a RSS and a
SRS of size m each, i.e., X(k)∗

(ik) , k = 1, . . . ,m, are equivalent to a SRS of size m :

Var(µ̂) =
1
4

(
Var

(
µ̂RSS

)
+ Var

(
µ̂∗SRS

))
;

eff(µ̂; µ̂SRS) =
σ2/2m

1
4

(
Var (µ̂RSS) + Var

(
µ̂∗SRS

)) = 2σ2/m
Var(µ̂RSS)

/ (
1 +

Var(µ̂SRS)
Var(µ̂RSS)

)
=

2eff
1 + eff

,

where eff is the efficiency of the usual RSS of set size m w.r.t. a SRS of size m. Since, 1 ≤ eff ≤
(1/2)(m + 1), we have, 1 ≤ eff(µ̂; µ̂SRS) ≤ (2m + 2)/(m + 3). Table 5 contains the values of the
efficiency in general for the best and worst cases.

3. Second modification

3.1. Second modification of BVRSS (MBVRSS2)

In this section, we consider another modification of BVRSS, MBVRSS2. In this modification, we or-
der with respect to the first variable and give the second variable the same rank (concomitant variable)
for one cycle and do the other way around for the other cycle. Let (X,Y) be a bivariate random vector
with joint pdf, f (x, y). The suggested approach of BVRSS is obtained based on concomitant variable
using the following steps:

1. Randomly draw a SRS of size m from the population of interest. Then, identify the minimum with
respect to X-variable and give the corresponding Y-variable the same rank. Denote the identified
element by (X(1)

(1) ,Y
(1)
[1] ).

2. Randomly draw another SRS of size m. Then, identify the second minimum with respect to X-
variable and give the corresponding Y-variable the same rank. Denote the identified element by
(X(2)

(2) ,Y
(2)
[2] ).
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3. The process is continued until we identify the maximum with respect to X-variable and give the
corresponding Y-variable the same rank for a SRS of size m. Denote the identified element by
(X(m)

(m) , Y
(m)
[m] ).

4. Randomly draw a SRS of size m from the population of interest. Then, identify the minimum with
respect to Y-variable and give the corresponding X-variable the same rank. Denote the identified
element by (X(1)∗

[1] ,Y
(1)∗
(1) ).

5. Randomly draw a SRS of size m from the population of interest. Then, identify the second mini-
mum with respect to Y-variable and give the corresponding X-variable the same rank. Denote the
identified element by (X(2)∗

[2] ,Y
(2)∗
(2) ).

6. The process is continued until we identify the maximum with respect to Y-variable and give the
corresponding X-variable the same rank for a SRS of size m. Denote the identified element by
(X(m)∗

[m] ,Y
(m)∗
(m) ).

∗ Steps 1–3 make up the first cycle while steps 4–6 make up the second cycle.

The elements of the set {(X(k)
(k) ,Y

(k)
[k] ), (X(k)∗

[k] ,Y
(k)∗
(k) ) : k = 1, 2, . . . ,m} are the elements of the MBVRSS2

of size 2m using concomitant variable. Cycles 1 and 2 can be repeated r times if needed to obtain a
MBVRSS2 of size n = 2rm. The round bracket on a subscript is used to indicate that the ordering is
perfect, while the square bracket is used to indicate that the ordering is imperfect.

Consider (X(k)∗
[k] ,Y

(k)∗
(k) ), k = 1, 2, . . . ,m. Yang (1977) has shown that the conditional distribution of

the concomitant variable X(k)∗
[k] given the order statistic Y (k)∗

(k) is the same as the conditional distribution
of X given Y; i.e.,

fX(k)∗
[k] |Y

(k)∗
(k)

(
x(k)∗

[k] |y
(k)∗
(k)

)
= fX|Y

(
x(k)∗

[k] |y
(k)∗
(k)

)
.

Based on this result we can obtain the mean and the variance of the concomitant order statistic
X(k)∗

[k] , in terms of the mean and variance of the order statistic Y (k)∗
(k) .

The performance of this MBVRSS2 is investigated for two important distributions: the Bivariate
Normal Distribution and Downton’s Bivariate Exponential Distribution.

• Bivariate normal distribution: Assume that a random vector (X,Y) has a bivariate normal distri-
bution which is denoted by BN(µx, µy, σ

2
x, σ

2
y , ρ), where −∞ < x, y, µx, µy < ∞, 0 < σ2

x, σ2
y < ∞,

and −1 < ρ < 1. µx, µy, σ
2
x, σ

2
y , ρ are respectively the mean of X, the mean of Y , the variance of X,

the variance of Y and the correlation between X and Y . The joint pdf is given by:

fX,Y (x, y) =
1

2πσxσy
e

−1
2(1−ρ2)

((
x−µx
σx

)2−2ρ
(

x−µx
σx

)( y−µy
σy

)
+

(
y−µy
σy

)2
)
.

It is well- known that the marginals are normal and the conditionals are also normal. In particular:

Y = N
(
µy, σ

2
y

)
and (X|Y = y) = N

(
µx + ρ

σx

σy

(
y − µy

)
, σ2

x (1 − ρ)2
)
.

Using the results of Yang (1977), we have

fX(k)∗
[k] |Y

(k)∗
(k)

(
x(k)∗

[k] |y
(k)∗
(k)

)
= fX|Y

(
x(k)∗

[k] |y
(k)∗
(k)

)
.
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Table 6: The eff(µ̂x; µ̂SRS) for Bivariate normal distribution

m ↓ |ρ| → 0.0 0.2 0.4 0.6 0.8 |ρ| → 1
2 1.19 1.20 1.23 1.28 1.36 1.47
3 1.31 1.33 1.38 1.48 1.64 1.92
4 1.40 1.46 1.50 1.64 1.90 2.35

Thus,

E
(
X(k)∗

[k] |y
(k)∗
(k)

)
= µx + ρ

σx

σy

(
y(k)∗

(k) − µy

)
and Var

(
X(k)∗

[k] |y
(k)∗
(k)

)
= σ2

x (1 − ρ)2 .

Therefore,

E
(
X(k)∗

[k]

)
= E

(
E

(
X(k)∗

[k] |Y
(k)∗
(k)

))
= µx + ρ

σx

σy
E

(
Y (k)∗

(k) − µy

)
;

also,

Var
(
X(k)∗

[k]

)
= Var

(
E

(
X(k)∗

[k] |Y
(k)∗
(k)

))
+ E

(
Var

(
X(k)∗

[k] |Y
(k)∗
(k)

))
= σ2

x (1 − ρ)2 + ρ2σ
2
x

σ2
y

Var
(
Y (k)∗

(k)

)
.

Let

µ̂x =

∑m
k=1 X(k)

(k) +
∑m

k=1 X(k)∗
(ik)

2m
,

then it can be shown easily that

E (µ̂x) = µx and Var (µ̂x) =
1

4m2

mσ2
x −

m∑
k=1

(
µ(k) − µ

)2
+ mσ2

x

(
1 − ρ2

)
+ ρ2σ

2
x

σ2
y

m∑
k=1

Var
(
Y (k)∗

(k)

) .
Let X1, X2, . . . , X2m be a SRS from N(µx, σ

2
x) and let µ̂SRS = X̄. Then

eff (µ̂x; µ̂SRS) =
σ2

x/2m
1

4m2

(
mσ2

x −
∑m

k=1
(
µ(k) − µ

)2
+ mσ2

x
(
1 − ρ2) + ρ2 σ

2
x

σ2
y

∑m
k=1 Var

(
Y (k)∗

(k)

))
=

2m
(m/eff) + m

(
1 − ρ2) + ρ2 (m/eff)

=
2eff

1 + eff(1 − ρ2) + ρ2 .

Table 6 gives the efficiency for m = 2, 3, 4 and different values of ρ. The efficiency is always larger
than 1; it is increasing in m for fixed ρ, and increasing in ρ for fixed m. As |ρ| → 1, the efficiency
goes to eff, which is the efficiency of µ̂RSS with respect to µ̂SRS for estimating the mean of normal
distribution.
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Table 7: The eff(µ̂x; µ̂SRS) for Downton’s bivariate exponential distribution

m ↓ |ρ| → 0 0.2 0.4 0.6 0.8 |ρ| → 1
2 1.14 1.15 1.17 1.20 1.26 1.33
3 1.25 1.30 1.36 2.04 1.47 1.64
4 1.32 1.33 1.38 1.48 1.64 1.92

• Downton’s bivariate exponential distribution: This distribution, denoted by DBE(θx, θy, ρ), was
introduced by Downton (1970). Its pdf is given by:

fX,Y (x, y) =
1

θxθyρ
e
−
(

x
θx (1−ρ)+

y
θy (1−ρ)

)
×I0

(
2(√ρxy)

(1−ρ)
√
θxθy

)
,

where, x, y, θx, θy > 0, 0 ≤ ρ < 1, and I0(z) =
∑∞

k=1 (z/2)2k/k!2 is the modified Bessel function of
the first kind of order zero.

The marginal distributions of X and Y are exponential with parameters θx and θy, respectively. Also,

E(X|Y = y) = (1 − ρ)θx + ρ
θx

θy
y and Var(X|Y = y) = (1 − ρ)2θ2

x + 2ρ(1 − ρ)
θ2

x

θ2
y

y.

Note that unlike the bivariate normal distribution, the conditional variance depends on the given
value of Y . Using the results of Yang (1977), we have

fX(k)∗
[k] |Y

(k)∗
(k)

(
x(k)∗

[k] |y
(k)∗
(k)

)
= fX|Y

(
x(k)∗

[k] |y
(k)∗
(k)

)
.

Thus,

E
(
X(k)∗

[k] |y
(k)∗
(k)

)
= (1 − ρ)θx + ρ

θx

θy
Y (k)∗

(k) and Var
(
X(k)∗

[k] |y
(k)∗
(k)

)
= (1 − ρ)2θ2

x + 2ρ(1 − ρ)
θ2

x

θ2
y

Y (k)∗
(k) ;

therefore

E
(
X(k)∗

[k]

)
= E

(
E

(
X(k)∗

[k] |Y
(k)∗
(k)

))
= (1 − ρ)θx + ρ

θx

θy
E

(
Y (k)∗

(k)

)
;

also,

Var
(
X(k)∗

[k]

)
= Var

(
E

(
X(k)∗

[k] |Y
(k)∗
(k)

))
+ E

(
Var

(
X(k)∗

[k] |Y
(k)∗
(k)

))
= (1 − ρ)2θ2

x + ρ
2 θ

2
x

θ2
y

Var
(
Y (k)∗

(k)

)
.

Thus, θ̂x = {
∑m

k=1 X(k)
(k) +

∑m
k=1 X(k)∗

(ik) }/2m, as in the bivariate normal case, is an unbiased estimator for
θx. The efficiency of θ̂x w.r.t. θ̂SRS is

eff
(
θ̂x; θ̂SRS

)
=

2eff
1 + eff(1 − ρ2) + ρ2 .

From Table 7, the efficiency is always larger than 1, increasing in m for fixed ρ, and increasing in ρ
for fixed m. Also as |ρ| → 1, the efficiency goes to eff, which is the efficiency of µ̂RSS with respect
to µ̂SRS for estimating the mean of the exponential distribution.
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3.2. General setting of the technique

In the previous subsection, we investigated the efficiency of µ̂x with respect to µ̂SRS for the mean of
some well-known distributions. In this subsection, we will look at a general case.

Let {(X(k)
(k) ,Y

(k)
[k] ), (X(k)∗

[k] ,Y
(k)∗
(k) ) : k = 1, 2, . . . ,m} be a MBVRSS2 of size 2m obtained using the

suggested technique explained above. Frey (2007) proposed that the distribution of the concomitant
order statistic can be written as a linear combination of the distribution of the order statistics:

X(k)∗
[k]

d
=

m∑
i=1

a(k)
i X(i),

where for each value of k, a(k)
i ≥ 0, and

∑m
i=1 a(k)

i = 1 (So X(k)∗
[k] is a convex combination of the X(i),

i = 1, . . . ,m). Now, let

µ̂x =

∑m
k=1 X(k)

(k) +
∑m

k=1 X(k)∗
(ik)

2m
.

Thus, E(µ̂x) = (1/2m)(mµ +
∑m

i=1 a(k)
i µ(i)) = µ/2 + (1/2m)

∑m
i=1 a(k)

i µ(i); thus µ̂x can be a biased
estimator of µ. Again, let eff be the efficiency of the usual estimator of µ using RSS of size m w.r.t. the
corresponding estimator using SRS; the values of eff are well established for most of the well-known
distributions. The efficiency of µ̂x w.r.t. µ̂SRS is given by

eff(µ̂x; µ̂SRS) =
σ2/2m

1
4

[
σ2

m×eff + Var
(

1
m

∑m
i=1 a(k)

i X(i)

)]
+

(
− µ2 +

1
2m

∑m
k=1

∑m
i=1 a(k)

i µ(i)

)2 .

eff(µ̂x; µ̂SRS) depends on the values of a(k)
i . If a(k)

i = 1/m for all i then E(µ̂x) = µ and Var(µ̂x) =
(σ2/4m)(1/eff + 1). Thus, in this case

eff (µ̂x; µ̂SRS) =
2eff

1 + eff
.

If a(k)
i = 0 for all i except a(k)

k = 1, then the sample is equivalent to two RSSs of size m each; thus,
eff(µ̂x; µ̂SRS) = 1. For other values of a(k)

i , the efficiency can be obtained similarly.

4. Application: trees data

In this section, data on heights (Y) and diameters (X) of 1,083 trees is used to illustrate the last
approach of MBVRSS2. These data was due to Pordan (1968). For this data: µx = 23.07, µy = 21.656,
σ2

x = 6.268, σ2
y = 3.039, and ρ = 0.721. To choose different MBVRSS2s from this bivariate data,

we followed the steps described previously. For m = 3 and m = 5, 10,000 MBVRSS2s were chosen
randomly; so, 10,000 values were generated for µ̂x and µ̂y.

• For m = 3, based on Table 8 we have:

Bias(µ̂x) = E(µ̂x) − µx � 23.054 − 23.070 = −0.016, MSE(X̄) � σ2
x/2m = 6.548, MSE(µ̂x) =

(2.032)2 + (−0.016)2 = 4.129. Thus, eff(µ̂x; X̄) = MSE(X̄)/MSE(µ̂x) = 1.586. Similarly, eff(µ̂y; Ȳ) =
1.539.

• For m = 5, based on Table 9 we have:

eff(µ̂x; X̄) = 3.929/1.991 = 1.973 and eff(µ̂y; Ȳ) = 0.924/0.462 = 2.
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Table 8: The summary of the resulted descriptive statistics for m = 3

Variable↓ N Average Standard deviation Max Min
X 1083 23.054 2.032 33.175 16.567
Y 1083 21.655 0.982 25.033 17.467

Table 9: The summary of the resulted descriptive statistics for m = 5

Variable↓ N Average Standard deviation Max Min
X 1083 23.047 1.411 29.775 18.090
Y 1083 21.647 0.680 24.010 18.890

5. Concluding remarks and suggested future work

In this paper, two approaches of BVRSS are introduced, which are shown to be more convenient
to apply in practice. The first approach was based on ranking of one variable and noting the exact
rank of the other variable in one cycle, and do the other way around in the other cycle. The second
approach is based on ranking the first variable in the first cycle and give the second variable the
same rank (concomitant order statistic), and do the other way around in the second cycle. The two
approaches were investigated in general and for some well-known distributions. A real data set was
used for illustration. The suggested approaches are shown to be useful for use in practice and can
be more efficient than using SRS. The proposed two approaches of BVRSS can be applied on other
modifications of RSS such as moving extreme ranked set sampling; this will be another choice that can
be investigated in the future. Parametric statistics can be done if the underlying distribution is known;
consequently, the MLE can be obtained. The information in the chosen sample can be measured using
Fisher information number.
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