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COMPARISON STUDY OF BIVARIATE LAPLACE
DISTRIBUTIONS WITH THE SAME MARGINAL
DISTRIBUTION

CHONG SuN Hong! AND Sung Sick HoNg?

ABSTRACT

Bivariate Laplace distributions for which both marginal distributions and
Laplace are discussed. Three kinds of bivariate Laplace distributions which
are extended bivariate exponential distributions of Gumbel (1960) are in-
troduced in this paper. These symmetrical distributions are compared with
asymmetrical distributions of Kotz et al. (2000). Their probability den-
sity functions, cumulative distribution functions are derived. Conditional
skewnesses and kurtoses are also defined. Their correlation coefficients are
calculated and compared with others. We proposed bivariate random vector
generating methods whose distributions are bivariate Laplace. With sample
means and medians obtained from generated random vectors, variance and
covariance matrices of means and medians are calculated and discussed with
those of bivariate normal distribution.

AMS 2000 subject classifications. Primary 62E15; Secondary 62H10.
Keywords. Asymmetry, bivariate Laplace, conditional kurtosis, conditional skewness,

same marginal distribution, random vector generation, symmetry.

1. INTRODUCTION

Given marginal distributions are not decisive to their bivariate distribution.
Fréchet (1951) shows that with given marginal distributions, there are many
bivariate distributions corresponding to their marginals. This is just about exis-
tence of bivariate distribution not for the structure.

Kozubowski and Podgorski (2000) suggest asymmetric multivariate distribu-
tions whose marginals are Laplace. With them, generalized multivariate Laplace
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distributions which are worked by Johnson (1987), Anderson (1992). Fernandez
et al. {1995), and Ernst (1998) are explored in this paper.

We will extend Gumbel (1960)’s work to three types of the bivariate Laplace
(double exponential) distribution whose marginals are Laplace. These symmet-
ric distributions obtained in this paper are different from the bivariate Laplace
distributions which are defined from the multivariate one of Kozubowski and
Podgorski (2000) and the generalized multivariate one of Fernandez et al. (1995)
and Ernst (1998). Three types of distributions are described and compared with
the contour shapes of others.

General multivariate Laplace distributions are reviewed in Section 2. In Sec-
tion 3, three types of symmetric bivariate Laplace distribution are discussed.
The probability density functions (pdf) and cumulative distribution functions
(cdf) are derived with plots of the functions. We find conditional moments in-
clude the conditional skewness and kurtosis as well as the correlation coefficient.
In Section 4, a method to generate a bivariate random vector whose distribution
is the bivariate Laplace is proposed. The variance and covariance matrices of
means and medians obtained from their generated random vectors are calculated
and compared with those of the bivariate normal distributions in Section 5. And
in Section 6, characteristics of three types of bivariate Laplace distribution sug-
gested in Section 3 are mentioned and compared with other bivariate Laplace
distributions obtained from literature reviews.

2. MULTIVARIATE LAPLACE DISTRIBUTION

2.1. Symmetric multivariate Laplace distributions

A symmetric Laplace distribution has already been extended to the multivari-
ate case that McGraw and Wagner (1968) listed a bivariate Laplace distribution
as a special case of elliptically contoured law, while Johnson and Kotz (1970)
provided its density function. These are marginal distribution function and joint
density function such as

1
fx@) = 5o -
1 V2q
xyir,y) = ———J ;
fry(ey) = e o( 1)
where o > 0. ¢ = /(2] — 2pz 129 + 23) /(1 — p?), and J,(-) is Bessel function of
the second kind with index A.
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Let X = (X, X>,..., X)) bearandom vector whose mean vector and varian-
ce-covariance matrix are defined g = (u1,pt2,...,pp) € R’ and T = (oyj), a
p X p symmetric positive definite matrix, respectively. If the random vector X
has a density function, then X has an elliptical contoured distribution if and only
if its density function is of the form

£(x) = k| g (x - ) =7 x - ).

where g is a non-negative real function and &, is a positive proportionality con-
stant. We denote the distribution of X as EC,(p, X ;9(-)). Specially let g(t) =
exp(—t*/2) with A > 0. The densities of X and R (= \/(x — p)/="1(x — p) )
are expressed such as

>

F(x) = kpalB{Zexp [ - {(x — )=~ x - )} 2], (2.1)

97P/?
h(r) = —— ky r? Texp(—r?), 7 > 0.
The density of a generalized gamma random variable which is introduced by
Stacy (1962) and described by Johnson and Kotz (1970) is specified as

fx) = Al'(p/2)

= oy BHE expl= (e - B e )} )

where k, ) in equation (2.1) is substituted with AT'(p/2)/(27?/2T'(p/X)). 1t is
called a multivariate generalized Laplace and denoted by X ~ MGL,(u, Z, )
(Kuwana and Kariya, 1991).

This family of univariate distributions includes the Laplace (A = 1), the
normal (A = 2), and the uniform [ — o, 4 + 0] (A = o) distributions (Ernst,
1998). Figure 2.1 shows the shape of MG Ly(0,3,1), where

2 —-05-v2-2

Yy =
—0.5-v2-2 4

An elliptical contour curve with f(x) = 0.1 is demonstrated in Figure 2.2.

2.2. Asymmetric multivariate Laplace distribution

The following characteristic function ¢(¢) and the density function f(xz) of an
asymmetric univariate Laplace distribution (AL) were introduced by Hinkley and
Revankar (1977) and used for modeling of stock price. which proposed by Madan
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FIGURE 2.1 Bivariate Laplace of Ernst FIGURE 2.2 An elliptical contour with f(z,y) = 0.1

et al. (1998). This distribution could extended to the asymmetric multivariate
Laplace distribution.

B(t) = (14 o?t? —ipt) 1,

1 k k .
;H—erXp<—;l‘>, lf.’L‘ZO,

1 .
;H—erXp<-—E.’E>, lf.Z'<0,

where k = 20 /(p + /402 + p?).

Kozubowski and Podgorski (2000) exterided the multivariate symmetric Lap-
lace distributions discussed by Anderson (1992) to asymmetric multivariate dis-
tributions whose characteristic function of the family of asymmetric multivariate
Laplace distributions is summarized as the following.

DEFINITION 2.1 (Asymmetric multivariate Laplace distribution). A random
vector Y in R® has a multivariate asymmetric Laplace distribution (AL), if its
characteristic function is given by

1 -1
o(t) = (1 + STt - im't) , teRY
where t € RY, m € RY, m # 0, and T is a d x d non-negative definite symmetric
matriz. It is denoted by Y ~ ALy4(m,X).

If the matrix X is a positive-definite, the distribution is then truly d-dimensio-
nal and possessed a probability density function. If m = 0, AL,;(0.3) turns to
be a symmetric multivariate Laplace distribution.
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They note that the term ‘multivariate Laplace law’ is somewhat ambiguous

since it has been used for at least the following classes of multivariate distributions
(Kotz et al., 2000).

Multivariate Laplace law.

1. A multivariate distribution generated by a vector of #d univariate Laplace
variables. See Marshall and Olkin (1993), Kalashniknov (1997), and Fer-
nandez et al. (1995) etc.

2. A bivariate distribution with Laplace marginal introduced by Ulrich and
Chen (1987).

3. An elliptically contoured distribution given by the characteristic function

() = (1 + %t’zt)_l, te R

See McGraw and Wagner (1968), Pillai (1985), Johnson (1987), Anderson
(1992), and Kotz et al. (2000).

4. A special case (A = 1) of the multivariate exponential power distribution
with the density

Fx) = Cexp [~ {(x - W=7 x - w}3], xe,

where C is a constant. See Fernandez et al. (1995), Ernst (1998), and
Haro-Lépez and Smith (1999).

5. A multivariate distribution with the density
s = ko () xeme,
ag

where Kj is modified Bessel function of the third kind and order zero (Fang
et al., 1990). In case d = 2 (and only in this case), the characteristic function
of this distribution is the following.

o(t) = (1 + %t'zt)‘l, tc R

Kozubowski and Podgorski (2000) introduced the asymmetric multivariate
Laplace density of AL;. Let G(-) and F(-) be cumulative distribution functions
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of ALy (m,X) and Ny(0,X) random vectors, respectively, and let g(-) and f(-)
be the corresponding probability distribution functions.

0

We can also express an ALy density in terms of the modified Bessel function of
the third kind. From above g(y) can be expressed as following (see Kotz et al.,
2000; Kozubowski and Podgorski, 2000):

QQXP()"E_IW) ( y12~1y )% -1 -1
= K, 2+m'E " m)(y'27y) |,
g(y) (2ﬂ)%|2|% 2+m’2_1'm <\/( )(y ) )

where v = (2 — d)/2 and K (u) is the modified Bessel function of the third kind
with index A. Let us illustrate following three densities.

EXAMPLE 1 (Symmetric multivariate Laplace (m = 0)). The probability d-
istribution function of a symmetric case in ALy (m = 0) is the following.

gly) =2(2)" 2|32 (y'z21y) gKu<\/ 2y’2’1y)

It is the same as the multivariate Laplace distribution of Anderson (1992).

ExAMPLE 2. Ifd=1 (v = 1/2), then the density function is the same as the
asymmetric univariate Laplace form.

where 02 =3, p=m, and v = /p? + 20°2.

ExXAMPLE 3. For the case d = 2 and v = 0,

oly) = 7 bep(y' B m) Ko (\/(2 4+ m S Tm) (y'E y) ).

Denoting
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we obtain a five parameter family dependent on my, 1. 07, 03, and p with the

densities of the form

1
glz,y) = ———=—= exp
1—p

(myog/oy — map)z + (Mo foy — mlp)y}

o109 0102(1 — p?)

o o
x Ko (C’(ml,mz,al,amp)\/x?_z — 2pzy + Y2 — )
o1 op)

where

B \/20102(1 — p?) + mioy/oy — 2mymap + mioy /oy
o102(1 = p?) '

C(m177n2~,01702vp)

The parameter m; and mo give information of the skewness of the density. For
two dimensional case (ALy), some shapes of the following densities and their
contours are demonstrated in order to compare with those of densities which will

be introduced in next section.

L. 9($,y;m17m2’017027l)) = g(m,y;070, \/5, \/5,0)

FIGURE 2.3 AL of p=10 FIGURE 2.4 AL, contour with p =0
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2. g(mﬁy;mlam% 01, 1727/)) = g('T7 b Os Oa \/57 \/i‘l “025)

FIGURE 2.5 ALy of p=-0.25 FIGURE 2.6 ALz contour with p = —0.25

3. g(z,ysmy,mg,01,09,p0) = g(z,¥;—2,1,V2, v2,0.5)

-p2

Ficure 2.7 Asymmetric ALy Laplace FigurE 2.8 Asymmetric. contour of AL,

3. ANOTHER SYMMETRIC BIVARIATE LAPLACE DISTRIBUTIONS

8.1. First type of bivariate Laploce distribution

The pdf and cdf of the first type of the bivariate exponential distribution are
as the following (see Gumbel, 1960; Jolhnson and Kotz. 1970).
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Forz>0,y>0and 0<0<1,

Fyy(z,y)=1—eT—e ¥+ e Ty 0zy,
fxy(zy) = e "4 {(1 + 0z)(1 + 6y) — 6}.
The marginal distributions of X and Y are each standard exponential. Let us

take absolute value functions on random variables X and Y in the above pdyf.
Then we could define the following pdf of the bivariate Laplace distribution.

DEFINITION 3.1. The pdf of the first type of the bivariate Laplace distribution
s defined as

1
fxy(z,y) = Jexp (—lz—px| -y — py] =0z — pxlly — pyl)
)_9}’

x{(1+0]z — px
where —00 K x <00, —co<y<o0, <0<, ux = E(X), and py = E(Y).

YL+ 0ly — py

The pdf of Definition 3.1 satisfies common properties of continuous density func-
tion. And one could get the following edf of the first type of the bivariate Laplace
distribution by using Definition 3.1.

THEOREM 3.1. The cdf of the first type of the bivariate Laplace distribution
15 defined as

F\ Y(x y)
{ _ 9e~@=1x) _ 9p=(y—iy) | o~(z—px)~(y=puy)=b(z—px)(y- w)}

x 2 HX,Y > HY

{ (v—ny) _, (I*NX)"‘(YJ_#Y)+9(1_ﬂx)(y“l1¥)}’ > px,y < py,

I
N

2e(T=px) _ plz—px)—(y=py )+0(z—px)(y- lﬂ)}ﬁ T < px,y > By,

,,;;|,_.>J>|»—A.J>[»—n
I_M\’_/h\

elT—ux)+{y— uy)—ﬁ(%ux)(y—uy)}, T < px,y < py,

where 0 < 6 < 1.

The proof can be obtained by double integrations with ease. The shapes of
pdf and cdf with several values of § and px = 0. gy = 0 are on Figure 3.1 ~
Figure 3.5. And Figure 3.6 is a contour plot with 8 = 1.
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2

FIGURE 3.1 pdf with § =0 FIGURE 3.2 pdf with 6 = 0.25

FIGURE 3.3 pdf with 8§ = 0.75 FIGURE 3.4 pdf with 6 =1

FIGURE 3.5 cdf with 8 =0 FIGURE 3.6 Contour with § =1

Note that the correlation coefficient p of the first type of the bivariate expo-
nential distribution belongs to —0.40 < p < 0 (see Gumbel, 1960; Johnson and
Kotz, 1970). The correlation coefficient of the first type of the bivariate Laplace
distribution could be derived as the following.
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THEOREM 3.2. The correlation coefficient p of the first type of the bivariate
Laplace distribution is p = 0, which is free of 6.

ProoOF. Without any losses of generality, suppose pxy = py = 0.

Cov(X,Y) = E[XY]

0 oo
= / / e lel=lul=0lzi=lule (1 4 0)2)) (1 + Bly]) — 0} dzdy
=0,
since the pdf is symmetric with respect to X and Y axes. a

The conditional £** moments given ¥ = y are obtained as the following.

THEOREM 3.3. The conditional k™ moments of X of the first type of the
bivariate Laplace distribution are derived such that

E[(X - ;Lx)k}y] = 0, where k is odd,

kN1 + H(y By ) + k6}
> -
)
)

E[(X — px)"ly] = k,{l,g(y py) + k6}

{1 -0y — py) trH!

The proof can be obtained by integrations with ease. With results of Theorem

, ¥y < py, where k is even.

3.3, one can get the conditional kurtosis and skewness as the following.

COROLLARY 3.1. The conditional kurtosis and skewness of the first type of
the bivariate Laplace distribution are

[X M,\)g\y]
E[(X - px)2ly]?
[(
(

=0,

E{(X — px) y]

B{(X - px)ly]"

6{1 +0(y — py) +40}{1 +0(y — py)}
{1+6(y — 1y) +29}2

6{1 —0(y — my) +40}{1 — 0y — v)}
{1 -0y — 1y) +29}2

-3

— 3,  wherey > py,

—3. wherey < uy.
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3.2. Second type of bivariate Laplace distribution

For z >0,y >0, and —1 < « < 1, the cdf and pdf of the second type of the
bivariate exponential distribution are proposed by Morgenstern (1956) such that,
Fyy(z,y) = Fx(z)Fy(y)[1 + o{l - Fx(a)H{1 - Fy(y)}]
fxy (@) = [x(@)Fy () [1 + a{2Fx () = 1}{2F(y) — 1}].
With similar arguments, the cdf and pdf of the second type of the bivariate Laplace

distribution could be derived.

DEFINITION 3.2. The cdf and pdf of the second type of the bivariate Laplace
distribution are defined as

Fxy(z,y)
( {1 — le—(z—ﬂx)}{l _ le_(y_HY)L{l + lae—(w—ux)—(y—m’)}

2 2 J 4 !

z Z HXx, Y Z Hy,

1 1 1 1
Loy-mv)fq 2 —(z—m} 2 ode-le—ux) _ L —(a—nx)+y-py)
26 {1 26 [1+2a{e 26 }],
ﬁ T2 px, Y <py,
1 1 1 1
> (z—px) _ 2 o~ (y—ny) - ~(y—py) _ = S(@—px)—(y—py)
26 {1 26 }[1+2a{e e }],

2
T < px, Y= py,

ie(r—ux)ﬂy—uy) [1 + a{l _ %e(x—ux)}{l _ %e@—w)}],

\ .'L'<,UX,y</1/Y,

fxy(z,y)

( zi_e—(ﬂf—ux)—(y—w) [1 + a{l - e—(f—ux)}{l - e—(y—m-)}]’

TZpXs Y2 Py,
%e'(f—ﬂx)“F(y—ﬂY) {1 fadl—e Y 14 e(z—w)}},
= { T2 px, Y <py,
%e(r—ux)—(y—uy) [1 ta{ -1+ e—(x—ux)}{l - e—(y—uy)}]’

T <px, Y2 My,
1

1 elT—nx )+ y—ny) [1 i a{l _ e(l‘—#x)}{l _ e(y—m}], €<y, y < pys
\

where —1 < «a < 1.
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Shapes of the pdf and cdf of the second type of the bivariate Laplace distri-

bution are shown in Figure 3.7 ~ Figure 3.9. And Figure 3.10 is an example of
a contour plot.

FIGURE 3.7 pdf with a = —1 FIGURE 3.8 pdf witha =1

N\

N2

\//"”

FIGURE 3.9 cdf with o = —1 FI1GURE 3.10 Several contours

The correlation coeflicient of the second type of the bivariate exponential
distribution in Gumbel’s study is obtained as p = /4. Note that since |a| <
1, p can not exceed —0.25 or be less than 0.25. Now Theorem 3.4 describes the
correlation coeflicient of the second type of the bivariate Laplace distribution.

THEOREM 3.4. The correlation coefficient p of the second type of the bivari-
ate Laplace distribution belongs to the interval

9 9
< p< =,
32 =FP=3
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ProOOF. Without any losses of generality, assume pxy = puy = 0.
Cov(X,Y) = E[XY]
1 1 1 1
= — = —<¢ —4—-—a(3)(-
16{4+4a(3)(3)}+ 16{ 126N 3)}

+%{ 4 %(-3)(3)} + %{4 + %a(3)(3)}
_ e
16

and ox? = oy? = 2. Therefore p = (9/32)a. O

The conditional k** moments of X given Y = y are also obtained.

THEOREM 3.5. The conditional k** moments of the second type of the bi-
variate Laplace distribution are derived such that

1. for an even number k,
E[(X —px)fly] =K, —o0<y<oo;

2. for an odd number k,

E[(X - ux)*y] = k!a(l I ikl_ﬂ){l B e_(y_w)}a Y > py,
Ma(@m - 1){1 - e(y—uy)}7 Y < iy
PROOF.

1. When £ is even,

E[(X - pux)*ly]

( %k!{l b ae- W) _ aél_k n ae—(y—uy%}, TSy y >y

_ %k!{l —a+ae¥H) 4 az—lk— - ae(y_“y)%k , T > pux, Yy < py,
%k!{l —a+4ae” W) 4 O‘}zl_k - ae’(y_“y);%}, T < Py, Y > Uy
%k!{l + o — aely=my) aQ—Ik- + ae(y_”’y)%;}, T < px, Yy < py.

When y > py,

. 1
E[(X = px)y] = 23k = KL
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and when y < uy,
: 1
E[(X — px)*ly] = 25! = k.
Hence for an even number &, E[(X — /1,,\-)'“] =kl —o0o <y < oc.
2. When £k is odd,

E[(X — ux)*|y]

(1 1
5]{]' {1 + o — ae_(y_“”/)— % + aeﬁ(y—“Y)Q—k} N Z 2 WX, Yy Z 1y,
1 1
§k! {1 — o+ eV 4 2% - ae(y_“”)—iz} ) T >y, Yy < py.

)1 1

§k! {—1 +a—ae W) % + ae_(y_”")Z—k} <X, Y 2 Py
1 1
—Q—k‘! {—1 — o+ aeW ) % - ae(y“"’Y)éz} , <y, Y < py.

\

When y > py,

E[(X - Mx)kly] = k!a(l - ;ﬁ) (1 — e—(y—m-))
and when y < py,
E[(X — ;Lx)kw] = k!o‘(QTlﬁ - 1) (1 _ e(zruy))_
O

The conditional kurtosis and skewness could be summarized by using Theorem
3.5.

COROLLARY 3.2. The conditional kurtosis and skewness of the second type
of the bivariate Laplace distribution are

45v/2 i
E[(X—'u,/\—)3|y] _ 32 a(l_e & ﬂY))v Y 2y

BIX —px)y]® | _45V2
32

(y(l - e(y_”‘Y)), y < ftys
E[(X = ux)'y]
E[(X — px)y]?

Since the coefficient of kurtosis is 3. the density is more peaked around its

center than the normal density.
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3.3. Third type of bivariate Laplace distribution

The pdf and cdf of the third type of the bivariate exponential distribution are

fxy(zy) = Pla,y)(@™ +y™)Y" D 2" (@™ +y™)Y™ +m -1},
F/\"Y(l',y) =1- e_I - e_y + P(‘Evy)7
where 2,y > 0, 1 < m < 2 and P(z,y) = R (see Gumbel, 1960;
Johnson and Kotz, 1970).

The pdf of the third type the bivariate Laplace distribution could be derived
by taking absolute value functions on z and y.

DEFINITION 3.3. The third type of the bivariate Laplace distribution has the
following pdf:

Im) 1/(m-2)

Ixy(@,y) = Pz — px|,ly — wy D) (Jz — px|™ + |y — py

- — 1
xle = ux™ My =y ™ { (2 = px ™+ ly = ™) 4 m -1,
where — oo < z,y < oo, 1 <m <2, and P(z,y) =exp{ — (2™ +ym)1/m}.
The third type of the bivariate Laplace pdf are shown at Figure 3.11 and

Figure 3.12. In order to get the cdf of the third types, complicated integration
methods are demanded, so that we left this to readers.

FIGURE 3.11 pdf with m =1 F1GURE 3.12 pdf with m = 1.6

4. APPLICATIONS

4.1. Random vector generation

Since we knew cdfs of the first and second types of the bivariate Laplace
distribution. we could generate random vectors of X and Y which follow the
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bivariate Laplace distribution by using the well-known inverse probability integral
transformation method.

SKETCH OF ALGORITHM.
Step 1. Generate u; ~ U(0,1).

Step 2. If 0 < uy < 1/2, then generate ug ~ U(0,1/2). Get a negative z such
that

T = FX_I('UQ)

and if 1/2 <wuy <1, then generate uy ~ U(1/2,1). Get a non-negative z
such that
z = F," (ug).

Step 3. With given values u; and x obtained at Step 1 and 2, respectively, gen-
erate

y = F,7 ).

Yz

Step 4. Once appropriate z and y are obtained, then go to Step 1 until random
vectors of given sample size arc collected. If one fails to obtain an appro-
priate value of Y, then go back to the Step 2, so that get another value of
r = F/\fl(uz)). And try to get an appropriate value y.

4.2. Simulation of comparison variance-covariance

From the random samples collected for standard normal and Laplace distri-
butions, the ratio of the asymptotic variances of the sample mean X and sample
median My are well-known such that

1. X1, Xa,..., Xn ~ N(0,1),

=2 <1
ViMy) 7
2. X1, Xo,..., X, ~ Laplace(0, 1).
V(X)
=2 1.
Viry) 7
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Now we generate random vector of X and Y whose distribution is the bivariate
Laplace distribution with py = py = 0. Then the variance and covariance
matrices of the sample mean (X,Y), the MLE of (uy, uy), and sample median
(Mx, My) from the random vectors of X and Y could be obtained and will be
compared with those of the random vectors whose distribution is the bivariate
normal distribution.

First of all, let us get the variance and covariance matrices of the sample
means and medians from the random vectors which are generated from bivariate
normal distribution. Consider the standard bivariate normal distribution with a
given correlation coefficient p. The values of p are given from —0.9 to 0.9 by the
increment 0.1. For each p, the size of random vector is 50 and collect 1,000 ran-
dom samples. Then the variances and covariances matrices of the sample means
and the sample medians are calculated and analyzed at Table 4.1. We could find
that the ratio of the determinant of the variance and covariance matrices is also
less than 1. The ratio is increasing up to 0.44 as absolute values of p get smaller.

Consider the first and second types of the bivariate Laplace distribution with
a given value of € and « are given from 0 to 1.0 and —~1.0 to 1.0 by increment
0.1, respectively. For each # and «, random vectors are of size 50, and take
1,000 repetitions. Table 4.2 shows that since the correlation the first type of the
bivariate Laplace distribution is zero, the variance-covariance matrices are also
larger than 1. With comparing of Table 4.3, these ratios of the first type of the
bivariate Laplace distribution are larger than those of the second type.

5. CONCLUSION

The multivariate law suggested by Kotz et al. (2000) is somewhat ambiguous
as mentioned in Section 2. When two dimensional distributions among multi-
variate ones are considered, one can find that several types of distributions are
overlapped in each cases. In particular, 1, 3, 4 and 5 cases have elliptical contour
curves.

In this work, three types of bivariate Laplace distributions with the same
marginals are derived, whose contours are non-elliptical and non-hyperbolic like
in Figure 3.6 and Figure 3.10. The first type of the bivariate Laplace distribution
has zero correlation coefficient. The odd™ conditional moments are always ‘0°, so
that the conditional pdf is symmetric with respect to its mean. The second type
does not have zero correlation coefficient. The correlation coefficient belongs to
[—9/32.9/32]. which is much narrow than that of the bivariate normal but a little
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TABLE 4.1 Results of the bivariate normal distribution

N - » V(T) ST v . . _ Det(3xv)
p 1 (_X) 1 (1\[)\) m COL(‘\,} ) COl(f\[‘\,A[y ) m
-1.0 | 0.0209  0.0332 0.6308
-0.9 | 0.0199  0.0323 0.6162 —0.0183 —0.0232 0.1476
-0.8 | 0.0205  0.0315 0.6501 —0.0159 —0.0196 0.2400
—0.7 | 0.0207  0.0299 0.6921 -0.0149 —-0.0147 0.3088
-0.6 | 0.0199  0.0296 0.6716 —0.0121 -0.0128 0.3511
—0.5 | 0.0227  0.0335 0.6732 —0.0110 -0.0106 0.3683
~0.4 | 0.0188  0.0290 0.6500 —0.0081 ~0.0086 0.3831
-0.3 | 0.0208 0.0301 0.6918 -0.0072 —0.0060 0.4041
—0.2 | 0.0203 0.0303 0.6693 —0.0028 —0.0026 0.4178
—0.1 } 0.0209  0.0323 0.6473 —0.0021 —0.0026 0.4387
0.0 | 0.0189  0.0283 0.6685 —-0.0001 —0.0001 0.4371
0.1 | 0.0192 0.0304 0.6327 0.0022 0.0017 0.4203
0.2 | 0.0202 0.0317 0.6376 0.0047 0.0044 0.3857
0.3 | 0.0214 0.0327 0.6542 0.0067 0.0075 0.4125
0.4 ] 0.0208 0.0324 0.6419 0.0082 0.0085 0.3928
0.5 | 0.0193  0.0302 0.6396 0.0095 0.0107 0.3672
0.6 | 0.0206 0.0312 0.6606 0.0113 0.0134 0.3649
0.7 | 0.0194 0.0298 0.6522 0.0135 0.0145 0.3228
0.8 { 0.0211  0.0313 0.6722 0.0173 0.0196 0.2559
0.9 | 0.0202 0.0314 0.6409 0.0182 0.0223 0.1627
1.0 | 0.0204 0.0332 0.6155

TABLE 4.2 Results of the first type of the biwariate Laplace distribution

P V(X)) V(Mx) “(f‘})) Cov(X,Y)  Cov(My,My) D—Z%%
0.0 | 0.0191 0.0087 2.1881 0.0001 0.0002 4.2139
0.1 { 0.0160  0.0081 1.9620 —0.0009 0.0003 3.3897
0.2 | 0.01564  0.0081 1.8929 —0.0006 —0.0003 3.6100
0.3 | 0.0146  0.0080 1.9402 0.0000 0.0002 3.7472
0.4 | 0.0151  0.0077 1.9655 —-0.0005 —0.0004 3.3323
0.5 | 0.0148  0.0077 1.9270 —0.0007 —0.0001 3.3528
0.6 | 0.0133  0.0074 1.7948 —0.0003 0.0003 3.6479
0.7 | 0.0139  0.0075 1.8550 —0.0013 —0.0001 3.5876
0.8 | 0.0137 0.6074 1.8491 —0.0006 —-0.0005 3.2745
0.9 { 0.0132  0.0075 1.7603 —0.0005 0.0003 3.2835
1.0 { 0.0132  0.0073 1.8132 0.0004 0.0000 3.4505
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TABLE 4.3 Results of the second type of the bivariate Laplace distribution

A VM V(X) - = L Det(Txy)
p V(X)) V(Mx) Vi) Couv(X,Y) Cov(Mx,My) m
-1.0 | 0.0417  0.0362 1.3958 -0.0139 —0.0079 1.8362
—-0.9 | 0.0394 0.0279 1.4128 —0.0122 —0.0066 1.9663
-0.8 | 0.0406 0.0320 1.5356 —0.0117 —0.0059 1.9882
-0.7 | 0.0397 0.0282 1.4179 —0.0096 —0.0040 2.1993
-0.6 | 0.0415 0.0310 1.4027 —0.0083 —0.0049 2.0152
—-0.5 | 0.0422  0.0297 1.4033 —0.0075 —0.0052 2.4178
-0.4 | 0.0417 0.0303 1.3166 —0.0059 —0.0032 2.2028
—-0.3 | 0.0385  0.0255 1.2567 —(.0043 —0.0025 2.5356
—-0.2 | 0.0358  0.0259 1.4754 —0.0045 —0.0008 2.0198
-0.1 | 0.0378 0.0267 1.4131 -0.0028 —0.0013 2.0848
0.0 | 0.0368 0.0227 1.5037 —0.0003 0.0001 2.7077
0.1 | 0.0359 0.0265 1.3793 —0.0018 0.0008 1.9703
0.2 | 0.0343 0.0244 1.4047 —-0.0011 0.0013 2.0391
0.3 | 0.0389  0.0269 1.3742 0.0015 0.0008 2.2219
0.4 | 00375 0.0271 1.3353 0.0037 0.0018 2.3266
0.5 | 0.0433  0.0262 1.3973 0.0060 0.0006 2.6630
0.6 | 0.0388  0.0286 1.3005 0.0064 0.0038 2.2621
0.7 | 0.0388  0.0278 1.2744 0.0057 0.0045 2.2858
0.8 | 0.0371  0.0276 1.2982 0.0080 0.0038 2.3759
0.9 | 0.0389 0.0316 1.2765 0.0103 0.0048 1.9165
1.0 | 0.0423 0.0314 1.3265 0.0114 0.0060 2.1414

th conditional moments has

larger than that of bivariate exponential. The even
a constant value. The value of the conditional kurtosis is 3 which is larger than
that of the conditional normal distribution.

With known cdfs of the bivariate Laplace distribution, random vectors could
be generated by the inverse probability transformation integral method. The
variance-covariance matrices of the sample means and medians obtained from
generated random vectors are calculated and compared with each other. We
might conclude that the determinant of the variance-covariance matrix of the
sample means collected from bivariate Laplace distribution is larger than that of
the sample medians for both of the first and second type of the bivariate Laplace
distributions.

These multivariate Laplace distributional properties might be used for some
statistical inference in a near future such as real problem applications including
rare event analysis, econometrics and finance analysis,
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