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ON A CLASS OF BIVARIATE MEANS INCLUDING A LOT

OF OLD AND NEW MEANS

Mustapha Räıssouli and Anis Rezgui

Abstract. In this paper we introduce a new formulation of symmetric

homogeneous bivariate means that depends on the variation of a given
continuous strictly increasing function on (0,∞). It turns out that this

class of means includes a lot of known bivariate means among them the
arithmetic mean, the harmonic mean, the geometric mean, the logarith-

mic mean as well as the first and second Seiffert means. Using this new

formulation we introduce a lot of new bivariate means and derive some
mean-inequalities.

1. Introduction

In [3], the authors introduced a new bivariate mean Z given by

(1.1) ∀a, b > 0, Z(a, b) =
2(a− b)

exp
(
1− b/a

)
− exp

(
1− a/b

) , with Z(a, a) = a,

where the notation exp(x) := ex refers here to the standard exponential func-
tion of x ∈ R. It is easy to see that the (symmetric homogeneous) mean Z can
be included in the class of binary maps having the following form

(1.2) mf (a, b) =
2(a− b)

f(a/b)− f(b/a)
, a 6= b, mf (a, a) = a,

where f : (0,∞) −→ R is a real function. It is obvious that mf is always
symmetric (in a and b) and homogeneous. The following question arises: under
which conditions on f such that mf (a, b) realizes a bivariate mean, i.e., satisfies
min(a, b) ≤ mf (a, b) ≤ max(a, b) for all a, b > 0? As a first obvious necessary
condition, f should be strictly increasing for mf (a, b) to be well-defined and to
satisfy m(a, b) > 0 for all a, b > 0. The requirement mf (a, a) = a is ensured
whenever the following condition

lim
x→1

2(x− 1)

f(x)− f(1/x)
= 1
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Table 1.1. Fitted standard means

The intrinsic function f The generated mean mf := mf (a, b), a 6= b

f(x) = x or f(x) = −1/x Harmonic mean: H = 2ab
a+b

f(x) = −4/(x+ 1) Arithmetic mean: A = a+b
2

f(x) = 2
√
x Geometric mean: G =

√
ab

f(x) = lnx Logarithmic mean: L = a−b
ln a−ln b

f(x) = 4 arctan
√
x First Seiffert mean: P = a−b

2 arcsin a−b
a+b

f(x) = 2 arctanx Second Seiffert mean: T = a−b
2 arctan a−b

a+b

f(x) = 2 sinh−1 x−1x+1 Neuman-Sàndor mean: NS = a−b
2 sinh−1 a−b

a+b

f(x) = −e1−x Z = 2(a−b)
exp(1−b/a)−exp(1−a/b) .

holds. If in addition the function f is assumed to be continuously differentiable,
then this latter condition is equivalent (by using the standard mean-value the-
orem) to f ′(1) = 1.

Actually, the answer to the previous question stems its importance in the
fact that (1.2) includes a lot of known bivariate means. (See the table above.)

The remainder of this paper will be organized as follows: after this intro-
duction, Section 2 displays the resolution of a functional equation that will be
needed in the sequel. Section 3 is devoted to investigate, in a general context,
the necessary and sufficient conditions on f which guarantee that (1.2) defines
a bivariate mean. In Section 4 we have pointed out a relatively easy way to
derive a lot of new means and their related mean-inequalities.

2. On a functional equation

In the aim to determine all f : (0,∞) −→ R for which (1.2) defines a mean,
we need to characterize the general solution of an involved functional equation.

Let R(0,∞) be the real vector space of all real functions defined from (0,∞)
into R.

We start this section by stating the following needed lemma.

Lemma 2.1. Let g ∈ R(0,∞). Then the following two assertions are equivalent:
(i) For all x > 0, we have

(2.1) g(1/x) = −g(x)
(
resp. g(1/x) = g(x)

)
.

(ii) There exists an odd function (resp. even function) µ : R −→ R such that

∀x > 0 g(x) = µ ◦ lnx.
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Proof. If there exists an odd function µ such that g(x) = µ ◦ lnx for all x > 0,
obviously g satisfies (2.1). Suppose now that g satisfies (2.1). Setting x = et > 0
for t ∈ R, (2.1) means that g(e−t) = −g(et) for any t ∈ R. It follows that
µ := g ◦ exp is an odd function, with g(x) =

(
g ◦ exp

)
◦ lnx := µ ◦ lnx for

every x > 0. The desired result is obtained, so finishing the proof. �

Now, we need more notations. We set

F− =
{
g = µ ◦ ln; µ : R −→ R is an odd function

}
,

F+ =
{
h = ν ◦ ln; ν : R −→ R is an even function

}
.

With this, the previous lemma tells us that, g ∈ R(0,∞) satisfies g(1/x) =
−g(x)

(
resp. g(1/x) = g(x)

)
for all x > 0, if and only if g ∈ F−

(
resp.

g ∈ F+

)
. The following proposition summarizes some needed properties of the

two previous sets.

Proposition 2.2. The following assertions are true:
(i) F− and F+ are both subspaces of R(0,∞).
(ii) F− and F+ are supplementary in R(0,∞), i.e.,

F− ⊕F+ = R(0,∞).

Proof. It is straightforward. Details are simple and therefore omitted here for
the reader. �

Of course, a large number of functions belonging to one of the previous sub-
spaces can be immediately stated here. Some of the most interesting examples
can be found in the literature. For instance, we cite the following.

Example 2.1. Let m be a symmetric homogeneous bivariate mean. It is easy
to see that the map g : x 7−→ x−1

m(x,1) belongs to F−. If moreover x 7−→ m(x, 1)

is differentiable on (0,∞), it is easy to see that the map h : x 7−→ x d
dx

(
x−1
m(x,1)

)
belongs to F+. As an example, if we take m = P , the first Seiffert mean, a
simple computation leads to (for all x > 0 and t ∈ R)

g(x) =
x− 1

P (x, 1)
= 2 arcsin

x− 1

x+ 1
,

h(x) = xg′(x) =
2
√
x

x+ 1
= ν ◦ ln(x), with ν(t) =

1

cosh(t/2)
.

Example 2.2. Two special elements of F+ are the following celebrated func-
tions

K(x) =
(x+ 1)2

4x
, S(x) =

x
1

x−1

e ln
(
x

1
x−1
) , with S(1) = 1,
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known in the literature as the Kantorovich constant and Specht ratio, respec-
tively. It is not hard to check that the map

x 7−→
∫ x

1

K(t)

t
dt =

1

4

x2 − 1

x
+

1

2
lnx

belongs to F−. By the same arguments, the function x 7−→
∫ x
1
S(t)
t dt, which

seems not be explicitly computable, defines an element of F−.
The previous functions K and S possess nice properties and appear as good

tools in the refinement of a lot of mean-inequalities, see [1,2,4–6] for instance.

Example 2.3. Let f : [−1, 1] −→ [−1, 1] be an even (resp. odd) function.
Then the following map

x 7−→ f
(x− 1

x+ 1

)
belongs to F+ (resp. F−).

Finally, we end this section by stating another lemma that will be needed
in the sequel.

Lemma 2.3. Let g ∈ F−. Then the functional equation in the unknown f ∈
R(0,∞) generated by the following equality

(2.2) ∀x > 0 f(x)− f(1/x) = 2g(x)

has as solutions, functions of the form f = g + h for h ∈ F+.

Proof. If f = g + h for h ∈ F+ it is easy to check that f is a solution of the
functional equation generated by (2.2).

Since the homogeneous functional equation associated to (2.2) is linear, then
the set of solutions of (2.2) is expressed as follows: a particular solution of (2.2)
+h, where h is the general solution of the associated homogeneous functional
equation of (2.2). Following Lemma 2.1, the set of solutions of such homoge-
neous functional equation is F+. Now, it is easy to verify that if g ∈ F−, then
g is a particular solution of (2.2). It follows that every solution of (2.2) can be
written as f = g + h with h ∈ F+. The proof is complete. �

3. On a class of bivariate means

We now are ready to answer the question asked in the introduction: Under
which conditions the binary function defined in (1.2) defines a bivariate mean?
The following theorem, which answers affirmatively this latter question, is the
central result of this section.

Theorem 3.1. The following assertions hold:
(i) Let f be a monotonic function on (0,+∞). If the binary function mf

defined by (1.2) realizes a bivariate mean, then there exists (g, h) ∈ F− × F+

such that f = g + h, and satisfying, for all x ≥ 1

(3.1) 1− 1

x
≤ g(x) ≤ x− 1.
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(ii) Conversely, for any function g ∈ F− that satisfies (3.1) and for any
h ∈ F+, the binary function defined as in (1.2) with f = g + h realizes a
bivariate mean.

Proof. First, if we put 2g(x) = f(x) − f(1/x) for x > 0, then g satisfies
g(x) = −g(1/x) for any x > 0. By virtue of the symmetric character of mf

defined by (1.2), we can assume without loss the generality that 0 < a < b.
(i) Let f be a monotonic function on (0,+∞) and assume that the binary

function mf is a bivariate mean. Then for 0 < a < b, the following two
inequalities hold:

(3.2) a ≤ mf (a, b) =
2(b− a)

f(b/a)− f(a/b)
≤ b.

If we put x = b/a, then for every x > 1, f satisfies

(3.3) 1 ≤ 2(x− 1)

f(x)− f(1/x)
≤ x,

or equivalently

(3.4)
1

x
≤ g(x)

x− 1
≤ 1.

By using Lemma 2.1 the function g should be an element of F− and (3.4) turns
to

1− 1

x
≤ g(x) ≤ x− 1, x ≥ 1.

Since f(x) − f(1/x) = 2g(x) for every x > 0 then by Lemma 2.3 there exists
h ∈ F+ such that

f = g + h,

which finishes the proof of the necessary condition.
(ii) Now suppose that f = g + h for a given g ∈ F− that satisfies (3.1) and

h ∈ F+. Then it is easy to see that

f(x)− f(1/x)

2(x− 1)
=

g(x)

x− 1
,

since g(1/x) = −g(x) and h(1/x) = h(x) for any x > 0. This finishes the proof
of the sufficient condition. �

Denote by C
(
[0,∞)

)
the space of all continuous real functions defined on

[0,∞) and set

E =
{
u ∈ C

(
[0,∞)

)
, ∀x ≥ 0 e−x ≤ u(x) ≤ ex

}
.

The following result gives the way how to construct symmetric homogeneous
bivariate means using the previous theorem.



244 M. RAÏSSOULI AND A. REZGUI

Corollary 3.2. Let u ∈ E and let µ be the odd function defined on R, with

∀x ≥ 0 µ(x) =

∫ x

0

u(t)dt.

Then the function

(3.5) g(x) =

{
µ
(

lnx
)

for x ≥ 1,
−µ
(
− lnx

)
for 0 < x < 1

belongs to F−, satisfies (3.1) and so realizes a (symmetric homogeneous) bi-
variate mean mg defined, for 0 < a < b, as follows:

(3.6) mg(a, b) =
2(b− a)

g(b/a)− g(a/b)
=

b− a
g(b/a)

.

Proof. By its definition the function g belongs to F−. Now, since u ∈ E then,
it satisfies by definition e−1 ≤ u(t) ≤ et for all t ≥ 0. By the definition of the
function g we derive, for all x ≥ 1

1− 1

x
=

∫ ln x

0

e−tdt ≤ g(x) =

∫ ln x

0

u(t)dt ≤
∫ ln x

0

etdt = x− 1,

with reversed inequalities if 0 < x ≤ 1. It follows that g satisfies (3.1). We
finish the proof by using the previous theorem. �

Remark 3.1. Following the definition of u, µ and g, the symmetric mean mg

expressed in terms of g by (3.6) for 0 < a < b, can be expressed in terms of µ
and u, for all a, b > 0, a 6= b, by the following

(3.7) mg(a, b) =
|a− b|

µ
(
| ln a− ln b|

) =
|a− b|∫ | ln a/b|

0

u(t)dt

:= Mu(a, b).

We now see how we can use the previous results for obtaining certain old
bivariate means.

Example 3.1. (i) Consider first the trivial choice u(x) = ex. Then it is easy
to check that g(x) = x− 1 for x ≥ 1, and so g(x) = 1− 1/x for 0 < x < 1. For
0 < a < b, we have

mg(a, b) =
b− a
g(b/a)

=
b− a
b/a− 1

= a.

It follows that the associated (symmetric homogeneous) mean is Mu(a, b) =
min(a, b). Note that if we choose u(x) = e−x we get Mu(a, b) = max(a, b).

(ii) Let u(x) = 1 for x ≥ 0. It is easy to see that g(x) = lnx for every x > 0.
It follows that, for 0 < a < b, we have

mg(a, b) =
b− a
g(b/a)

=
b− a

ln b− ln a
.

We then deduce Mu(a, b) = L(a, b) the logarithmic mean.
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(iii) Take u(x) = coshx. By the same arguments as previous we obtain
Mu(a, b) = H(a, b) the harmonic mean.

(iv) Let u(x) = 1/ coshx. After a simple computation of integral we find
Mu(a, b) = T (a, b) the second Seiffert mean.

4. Derived new means and related mean-inequalities

We preserve the same notations as in the above. In the previous section
we have pointed out some well known means using our formulation. In the
ongoing section we will derive some new means and state some comparison
results between them and known means.

We start by stating a result saying that simple comparison between two
functions u, v ∈ E leads directly to comparison results between derived bivariate
means Mu and Mv.

Proposition 4.1. The following assertions hold:
(i) Let u, v ∈ E be such that u(x) ≤ v(x) for all x ≥ 0, (resp. u(x) < v(x)

for any x > 0). Then we have:

∀a, b > 0 Mu(a, b) ≥Mv(a, b), resp. ∀a, b > 0, a 6= b, Mu(a, b) > Mv(a, b).

(ii) Let u ∈ E be such that u(x) ≥ 1 for all x ≥ 0, (resp. u(x) > 1 for any
x > 0). Then one has:

∀a, b > 0 Mu(a, b) ≤ L(a, b) ≤M1/u(a, b),

resp. ∀a, b > 0, a 6= b, Mu(a, b) < L(a, b) < M1/u(a, b).

Proof. (i) It is an immediate consequence of (3.7).
(ii) Follows from (i) with the help of Example 3.1(ii). �

The following result signifies in fact that Mu, given by (3.7), is characterized
by u ∈ E . However mg, defined by (3.6), is characterized by g ∈ F− modulo
an element h ∈ F+.

Proposition 4.2. (i) Let u, v ∈ E be such that Mu = Mv. Then we have
u = v.

(ii) If mg1 = mg2 for g1, g2 ∈ F−, then we have g1 = g2+h for some h ∈ F+.

Proof. (i) By virtue of the symmetry and homogeneity of Mu we can assume
that x := a/b > 1. If Mu = Mv, then by (3.7), we have∫ ln x

0

u(t)dt =

∫ ln x

0

v(t)dt

for all x ≥ 1. Differentiating both sides of the above equation we obtain
u(lnx) = v(lnx) for any x ≥ 1. Thus u = v by a simple change of variables.

(ii) Assume that mg1 = mg2 for g1, g2 ∈ F−. By (3.6) we have (with x = a/b)

g1(x)− g1(1/x) = g2(x)− g2(1/x) or
(
g1 − g2

)
(x) =

(
g1 − g2

)
(1/x)

for all x > 0. According to Lemma 2.1 the desired result follows. �
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Now, we state the following proposition which is of interest for deriving new
examples of means.

Proposition 4.3. Let u ∈ E. Then the following assertions hold:
(i) If u(x) ≥ 1 for all x ≥ 0, then 1/u ∈ E and

∀x ≥ 0 e−x ≤ 1

u(x)
≤ 1 ≤ u(x) ≤ ex.

(ii) The map x 7−→ u(αx) := (u.α)(x) belongs to E, for any |α| ≤ 1.
(iii) If u is strictly increasing (resp. decreasing), then we have u.α < (>)u.β

whenever α < β and |α| ≤ 1, |β| ≤ 1.

Proof. It is immediate from the definition of E , with convenient simple manip-
ulations. Details are omitted here. �

The following two examples illustrate the previous results.

Example 4.1. Let u(x) = cosh(αx), with |α| ≤ 1. Since x 7−→ coshx is
an even function, we can restrict our situation to 0 ≤ α ≤ 1. After a simple
computation of integral, by using (3.7), the associated symmetric homogeneous
mean is given by

∀a, b > 0, a 6= b Mu(a, b) =
2αaαbα(a− b)
a2α − b2α

:= Lα(a, b).

This parameterized mean includes a lot of old means. In fact, if α = 1, then
Mu(a, b) = H(a, b) the harmonic mean, and if α = 1/2, then Mu(a, b) = G(a, b)
the geometric mean. Also, it is easy to see that

lim
α→0

2αaαbα(a− b)
a2α − b2α

=
a− b

ln a− ln b
= L(a, b),

which corresponds to (ii) of the preceding example.

Example 4.2. Let u(x) = 1/ cosh(αx), with 0 ≤ α ≤ 1. By similar arguments
as previous, our mean obtained here is given by

∀a, b > 0, a 6= b Mu(a, b) =
2α(a− b)

4 arctan(b/a)α − π
:= Sα(a, b).

Such weighted mean is an extension of certain known means. Indeed, the
particular case α = 1 corresponds to Mu(a, b) = T (a, b) the second Seiffert
mean whereas the case α = 1/2 yields Mu(a, b) = P (a, b) the first Seiffert
mean. The limit case α→ 0 also corresponds to L(a, b).

Remark 4.1. Proposition 4.3 asserts that the map α 7−→ Lα(a, b) is strictly
decreasing in α ∈ (0, 1], a 6= b. This, when combined with Example 4.1,
immediately yields H(a, b) < G(a, b) < L(a, b) for all a, b > 0, a 6= b. Similar
result for α 7−→ Sα(a, b) and, with Example 4.2, we then deduce L(a, b) <
P (a, b) < T (a, b). It follows that H(a, b) < G(a, b) < L(a, b) < P (a, b) <
T (a, b), which are well-known inequalities obtained here simultaneously and in
a fast way. Otherwise, since coshx > 1 for all x > 0 we deduce, by Proposition
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4.1, the following inequality Lα(a, b) < Sα(a, b) for any a, b > 0, a 6= b and
0 < α ≤ 1.

Now, for 1 ≤ p ≤ q, p, q integers, we set

∀x ≥ 0 rp,q[ω](x) := 1 +

q∑
k=p

ωk
xk

k!
,

where the weight ω := (ωk)qk=p is such that 0 ≤ ωk ≤ 1 for each k = p, p +
1, . . . , q. For the sake of simplicity, we put

Ωp,q =
{
ω := (ωk)qk=p; 0 ≤ ωk ≤ 1, ∀k = p, p+ 1, . . . , q

}
.

With this, the following result may be stated.

Lemma 4.4. With the previous notations, the following assertions hold:
(i) Ωp,q ⊂ Ωp1,q1 whenever 1 ≤ p ≤ p1 ≤ q1 ≤ q.
(ii) We have rp,q[ω] ∈ E for any 1 ≤ p ≤ q and ω ∈ Ωp,q.
(iii) Let x > 0. Then, the map p 7−→ rp,q[ω](x) is strictly decreasing whereas

q 7−→ rp,q[ω](x) is strictly increasing. That is,

1 ≤ p1 < p2 ≤ q2 =⇒ rp1,q[ω](x) > rp2,q[ω](x) for ω ∈ Ωp1,q,

and

1 ≤ p ≤ q1 < q2 =⇒ rp,q1 [ω](x) < rp,q2 [ω](x) for ω ∈ Ωp,q2 .

Proof. (i) It is immediate from the definition of Ωp,q.
(ii) It is clear that, for all x ≥ 0, we have

rp,q[ω](x) = 1 +

q∑
k=p

ωk
xk

k!
≤ 1 +

q∑
k=1

xk

k!
≤ 1 +

∞∑
k=1

xk

k!
= ex.

This, with (i), immediately yields the desired result.
(iii) Let 1 ≤ p1 < p2 and 1 ≤ q1 < q2. Using the definition of rp,q[ω](x), it

is easy to see that the two following statements

rp1,q[ω](x)− rp2,q[ω](x) =

p2−1∑
k=p1

ωk
xk

k!
> 0 and

rp,q2 [ω](x)− rp,q1 [ω](x) =

q2∑
k=q1+1

ωk
xk

k!
> 0

hold for any x > 0. The desired result is obtained. �

Now we can state the following results which give birth to a new family of
symmetric homogeneous bivariate means.

Proposition 4.5. Let p and q be integers such that 1 ≤ p ≤ q and ω ∈ Ωp,q.
Then the following assertions hold:
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(i) The following binary map

(4.1) ∀a, b > 0, a 6= b, Rp,q[ω](a, b) =
|a− b|

| ln a− ln b|+
q∑

k=p

ωk

∣∣ ln a− ln b
∣∣k+1

(k + 1)!

,

with Rp,q[ω](a, a) = a, realizes a symmetric homogeneous bivariate mean.
(ii) For all a, b > 0, a 6= b, the map p 7−→ Rp,q[ω](a, b) is strictly increasing

whereas q 7−→ Rp,q[ω](a, b) is strictly decreasing.

Proof. (i) Let u ∈ E with u(x) = rp,q[ω](x) for x ≥ 0. According to Corol-
lary 3.2, with Remark 3.1, we obtain the desired result after an elementary
computation. Details are simple and therefore omitted here.

(ii) It is sufficient to combine Proposition 4.1 with Lemma 4.4(ii). �

Before giving concrete examples we notice the following remarks.

Remark 4.2. (i) If ωk = 1 for any k, we drop ω in the two notations rp,q[ω] and
Rp,q[ω], for the sake of simplicity.

(ii) It is clear that if ωk = 1 for any k, then we have r1,∞(x) := limq↑∞ r1,q(x)
= ex for all x > 0.

(iii) If we choose ωk = αk if k is even and ωk = 0 if k is odd, for some
0 ≤ α ≤ 1, then we have r1,∞[ω](x) = coshαx for any x > 0.

Remark 4.3. (i) By a simple manipulation, the bivariate mean given by (4.1)
can be written as follows

Rp,q[ω](a, b) =
L(a, b)

1 +
∑q
k=p ωk

| ln a−ln b|k
(k+1)!

.

(ii) If we choose q = p and ωp = 1 in the previous (i), we deduce that the
following binary map

Rp,p(a, b) =
L(a, b)

1 + | ln a−ln b|p
(p+1)!

,

with Rp,p(a, a) = a, realizes a symmetric homogeneous bivariate mean for each
p ≥ 1.

As a particular case of the previous proposition we can state the following
example.

Example 4.3. Let u(x) = r1,1(x) := 1 + x ≥ 1 for x ≥ 0. According to the
previous corollary, the following

∀a, b > 0, a 6= b R1,1(a, b) =
2|a− b|(

| ln a− ln b|+ 1
)2
− 1

=
2L(a, b)

2 + | ln a− ln b|
,

defines a symmetric homogeneous mean.
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More concrete examples of interest may be given. In fact, if we take u(x) =
rp,q[ω](x) ≥ 1 for x ≥ 0, Proposition 4.3 tells us that 1/u ∈ E and so M1/u :=

Rp,q[ω] realizes a symmetric homogeneous mean. With this, it is immediate

that for all a, b > 0, a 6= b, the map p 7−→ Rp,q[ω](a, b) is strictly decreasing

while q 7−→ Rp,q[ω](a, b) is strictly increasing.

However, explicit computation of Rp,q[ω](a, b) is not always possible, even if
ωk = 1 for any k. It is worth mentioning that, for some particular choices of
u ∈ E , we can compute Rp,q as mentioned in the following example.

Example 4.4. (i) Let u(x) = r1,1(x) := 1 +x ≥ 1 for x ≥ 0. We have 1/u ∈ E
and by simple computation we obtain

∀a, b > 0, a 6= b, M1/u(a, b) =
|a− b|

ln
(

1 +
∣∣ ln a− ln b

∣∣) := R1,1(a, b).

(ii) Let u(x) = r2,2(x) := 1+x2/2 ≥ 1 for x ≥ 0. By similar way as previous
we have 1/u ∈ E and simple computation leads to

∀a, b > 0, a 6= b, M1/u(a, b) =
a− b

√
2 arctan

(
ln a− ln b√

2

) := R2,2(a, b).

(iii) Let u(x) = r1,2(x) := 1 +x+x2/2 ≥ 1 for x ≥ 0. By similar arguments,
1/u ∈ E and we obtain (after a computation of integral)

∀a, b > 0, a 6= b, M1/u(a, b) =
|a− b|

2 arctan
(
| ln a− ln b|+ 1

)
− π/2

:= R1,2(a, b).

The previous bivariate means appear to us to be new. The following result
concerns mean-inequalities involving these means.

Proposition 4.6. With the above, the following assertions hold:
(i) For any 1 ≤ p ≤ q and all a, b > 0, a 6= b we have

Rp,q(a, b) < L(a, b) < Rp,q(a, b).

(ii) For all a, b > 0, a 6= b one has

R1,1(a, b) < L(a, b) < R1,1(a, b) < R1,2(a, b),

L(a, b) < R2,2(a, b) < T (a, b) and L(a, b) < R2,2(a, b) < R1,2(a, b).

Proof. (i) Since rp,q(x) > 1 for any x > 0 then Proposition 4.1(ii) immediately
yields the desired double inequality.

(ii) It can be proved by similar arguments as previous with the help of
Example 4.2. Details are simple and therefore omitted. �

Remark 4.4. The two means R1,1 and R2,2 are not comparable. To show this,
it is in fact sufficient to consider the following function

x 7−→ F (x) = ln
(
1 + lnx

)
−
√

2 arctan
lnx√

2
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and then study its sign for x ≥ 1. It is not hard to see that

F (e2) = ln 3−
√

2 arctan
√

2 ≈ −76.309... < 0 and lim
x→+∞

F (x) = +∞.

We can then conclude. We left to the reader the task for proving, in a similar
way, that the two means T and R1,2 are not comparable.

In order to give more application and examples of our approach, we need to
state the following result.

Proposition 4.7. Let u ∈ E. Then we have:
(i) uα ∈ E for each |α| ≤ 1, with uα(x) :=

(
u(x)

)α
for x ≥ 0.

(ii) ut ∈ E for every real number t > 0, where ut(x) :=
(
u(tx)

)1/t
for x ≥ 0.

Proof. It is straightforward. We left the detail for the reader. �

Now, we are in a position to add more new means itemized in the following
examples.

Example 4.5. Taking u(x) = r2,2(x) := 1+x2/2 and α = −1/2 in the previous

proposition, then x 7−→
(
1 + x2/2

)−1/2
belongs to E . Simple computation of

integral yields, for any x ≥ 0,

µ(x) =

∫ x

0

dt√
1 + t2

2

=
√

2 sinh−1
x√
2
.

By Corollary 3.2, with Remark 3.1, our mean obtained here is the following

(a, b) 7−→ a− b√
2 sinh−1 ln a−ln b√

2

, a 6= b.

Example 4.6. Let u(x) = r1,2(x) := 1 + x+ x2/2 and α = −1/2. By similar
way and arguments as in the previous example, we obtain here the following
mean

(a, b) 7−→ |a− b|
√

2
(

sinh−1
(
1 +

∣∣ ln a− ln b
∣∣)− sinh−1 1

) , a 6= b.

We left to the reader the routine task for comparing this mean with that ob-
tained in the previous example.

Example 4.7. Following the previous proposition, for any u ∈ E the map

x 7−→ uαr (x) :=
(
u(rx)

)α/r
belongs to E , for each r > 0 and |α| ≤ 1. If we

take u(x) = r1,1(x) = 1 + x, the associated family of symmetric homogeneous

means Muαr
:= R

(r,α)
1,1 is given by (after an elementary computation of integral)

∀a, b > 0, a 6= b R
(r,α)
1,1 (a, b) =

(r + α)|a− b|(
1 + r

∣∣ ln a− ln b
∣∣) r+αr − 1

.
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