• Title/Summary/Keyword: biological control agents

Search Result 288, Processing Time 0.021 seconds

Korean Medicinal Herb Extracts Inhibit Melanin Formation in Clone M-3 Mouse Melanocyte Cell Lines

  • Park, Kap-Joo;Choo, Dong-Wan;Lee, Hyung-Hoan
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.336-340
    • /
    • 2004
  • In order to search for anti -melanin formation agents from Korean medicinal herbs, we selected 21 Korean medicinal herbs, based on a review of Korean traditional medicine books and the recommendations of Korean traditional medical doctors. We tested for inhibition effect of melanin pigmentation of Clone M-3 mouse melanocyte cell lines when we treated the extracts of 21 medicinal herbs in the mouse melanocyte cell lines, respectively. Among 21 medicinal herb extracts, 5 extracts showed a inhibition effect of melanin formation. The sample Phaseolus radiatus L, Cordyceps militaris, Pinellia ternata, Phellinus linteus and Citrus junos Tanaka showed a significantly little formation of melanin pigments compared with control groups. Especially extract of Citrus junos Tanaka was more potent than the others. These results suggest that extract of Korean Citrus junos may represents an excellent candidate for inhibition of melanin pigmentation at in vitro level.

Biological Activities of Ursi Fel's Component Ursodeoxycholic Acid and Its Derivatives (웅담 성분 Ursodeoxycholic Acid 유도체들의 생물활성)

  • Cha, Bae Cheon
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • Ursi Fel's component ursodeoxycholic acid (UDCA), a traditional medicine, is used for the treatment of hepatic diseases. UDCA derivatives prepared by conjugation with antioxidant moiety such as maltol, sesamol, eugenol, mesitol and 3,4-(methylenedeoxy)aniline were expected to have various biological activity caused by synergistic effect of UDCA. Therefore, in this study, it was conducted the study of the manufacture of the UDCA derivatives and their biological activity. As a result, UDCA derivatives showed weak antioxidant activity in TBA method in vitro compared to original agents. SJ-505, SJ-502 and SJ-504 showed the effect of reducing ALT, AST, sorbitol dehydrogenase and ${\gamma}-glutamyltransferase$ in $CCl_4-induced$ liver injury experiment in vivo, even if the effects are weaker than UDCA and silymarin of the control group.

Control of Ginseng Damping-off by Streptomyces sp. A3265 (방선균 A3265 균주에 의한 인삼 잘록병의 방제)

  • Woo, E-Eum;Lee, Gang-Seon;Lee, In-Kyoung;Choi, Jae-Eul;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.193-195
    • /
    • 2016
  • Korean ginseng (Panax ginseng) possesses various biological and pharmacological properties. Damping-off is a critical disease on ginseng seedlings, which is caused by the fungal pathogens Rhizoctonia solani and Pythium sp.. This disease is generally controlled by the application of fungicides, but also biological control is an efficient and environmentally friendly way to prevent ginseng damping-off. In a previous study, we screened soil-borne bacteria with potential applications as biological control agents for ginseng damping-off and selected the bacterial strain Streptomyces sp. A3265, producing antifungal substances guanidylfungin and methylguanidylfungin. In this study, we investigated control efficacy of Streptomyces sp. A3265 against ginseng damping-off in the field. As a result, the incidence of damping-off was significantly reduced when soaking ginseng seeds in the culture broth of Streptomyces sp. A3265.

Characteristics of Microbial Biosurfactant as an Antifungal Agent Against Plant Pathogenic Fungus

  • YOO DAL-SOO;LEE BAEK-SEOK;KIM EUN-KI
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1164-1169
    • /
    • 2005
  • Characteristics of sophorolipid and rhamnolipid were evaluated as antifungal agents against plant pathogenic fungi. Eight percent of mycelial growth of plant pathogen (Phytophthora sp. and Pythium sp.) was inhibited by 200 mg/l of rhamnolipid or 500 mg/l of sophorolipid, and zoospore motility of Phytophthora sp. decreased by $90\%$ at 50 mg/l of rhamnolipid and $80\%$ at 100 mg/l of sophorolipid. The effective concentrations for zoospore lysis were two times higher than those of zoospore motility inhibition. The highest zoospore lysis was observed with Phytophthora capsici; $80\%$ lysis at 100 mg/I of di-rhamnolipid or lactonic sophorolipid, showing the dependency of structure on the lysis. In the pot test, the damping-off disease incidence ratio decreased to $42\%\;and\;33\%$ of control value at 2,000 mg/l sophorolipid and rhamnolipid, respectively. These results showed the potential of microbial glycolipid biosurfactants as an effective antifungal agent against damping-off plant pathogens.

Screening of Bacterial Antagonists to Develop an Effective Cocktail against Erwinia amylovora

  • Choi, Dong Hyuk;Choi, Hyun Ju;Kim, Yeon Ju;Lim, Yeon-Jeong;Lee, Ingyeong;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.152-161
    • /
    • 2022
  • Several types of chemical bactericides have been used to control fire blight. However, their excessive usage leads to environmental deterioration. Therefore, several researchers have analyzed antagonistic microorganisms as promising, effective, and safe biological control agents (BCAs). The primary aim of this study was to screen for potential antagonistic bacteria that suppress Erwinia amylovora. Among the 45 isolates studied, 5 strains showed the largest inhibition zone against E. amylovora. 16S rRNA gene sequencing identified them as Bacillus amyloliquefaciens (KPB 15), B. stratosphericus (KPB 21), B. altitudinis (KPB 25), B. safensis (KPB 31), and B. subtilis (KPB 39). KPB 25 and 31 reduced the lesion size of fire blight by 50% in immature apple fruits, and did not show antagonism against each other. Therefore, KPB 25 and 31 were selected to develop an antagonistic mixture against fire blight. Although the mixture with KPB 25 and 31 showed a slightly increased ability to reduce lesion size on immature fruits, they did not exhibit a synergistic effect in reducing E. amylovora population compared to each strain alone. Nevertheless, we have identified these two strains as useful and novel BCAs against fire blight with additional benefits safety and potential in developing a mixture without loss of their activity, owing to the absence of antagonism against each other.

Screening of Antagonistic Bacteria Having Antifungal Activity against Brown Spot and Sheath Rot of Rice (벼 깨씨무늬병 및 잎집썩음병에 항진균 활성을 갖는 길항 미생물의 탐색)

  • Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Seo, Ji-Won;Jeong, Do-Youn
    • The Korean Journal of Mycology
    • /
    • v.47 no.3
    • /
    • pp.259-269
    • /
    • 2019
  • Brown spot and sheath rot of rice are caused by fungal pathogens such as Curvularia lunata, Cochliobolus miyabeanus, and Sarocladium oryzae, and cause losses such as reduced rice yield and quality, which is an enormous problem with serious long-term effects. To search biological control agents of phytopathogenic fungi, five kinds of useful Bacillus-like isolates which are excellent in extracellular enzyme activity and produce siderophore were selected from paddy soil of Sunchang in Korea. The selected isolates were tested for excellent antifungal activity against three of the phytopathogenic fungi that frequently occur in rice, and JSRB 177 strain had the most excellent antifungal activity. Based on the experimental results, JSRB 177 is finally selected as a candidate for biological control and identified to Bacillus subtilis through 16S rRNA sequence analysis. In addition, physiological characteristics of JSRB 177 confirmed by analysis of carbohydrate fermentation patterns and enzyme production ability. Based on the above results, JSRB 177 is expected to be used as a biological control agent for the rice pathogenic fungi. In the future, further studies related to industrialization such as port test and establishment of mass production process are needed.

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Isolation and Characterization of Burkholderia cepacia strain YJK2, Antagonistic Microorganism of Paprika Pathogens (파프리카 병원균들에 대한 길항미생물, Burkholderia cepacia strain YJK2의 분리 및 특성)

  • Yang, Soo-Jeong;Kim, Hyung-Moo;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.133-148
    • /
    • 2015
  • Although several adverse effects have been increased in recent years, synthetic agro-chemicals have been widely used to control diseases on paprika. This research was conducted to isolate and to characterize the antagonistic microorganism to control major paprika diseases, gray mold rot, fruit and stem rot, phytophthora blight, sclerotium rot, and wilt disease. Analysis of the fatty acid and analysis of the 16S rDNA gene sequence revealed that YKJ2 isolated in this research belongs to a group of Burkholderia cepacia. Specially, 16S rDNA gene sequence of YKJ2 showed 99% of sequence similarity with B. cepacia. Observation through the optical microscope revealed that YKJ2 was effective on suppression of the spore germination and the hyphal growth of pathogens. YKJ2 treatment on pathogens induced marked morphological changes like hyphal swelling and degradation of cell wall. In the case of phytophthora blight, the zoosporangium formation was restrained. On the basis of the results of this study, we propose that an antagonistic microorganism, B. cepacia, found in this study naming as "B. cepacia strain YKJ2" and has great potential as one of biological control agents against major diseases of paprika.

Searching for Insecticidal Metabolites Produced by Insect Pathogenic Fungi (곤충기생성 진균이 생산하는 살충성 생리활성물질의 탐색)

  • Youn, Young-Nam;Yeo, Woon-Hyung;Seo, Mi-Ja
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.78-85
    • /
    • 1998
  • During the screening of biological control agents for insect pests in the greenhouse, 70 dead insect-related fungi were isolated and tested insecticidal effect of their culture filtrates was tested. From this studies, CNAB-63 isolate showed strong control effects against the cotton aphids and the two-spotted spider mite as 65.19% and 77.55%, respectively. The insecticidal active compound of CNAB-63 isolate was purified from culture filtrate by silica gel chromotography, thin layer chromatography and HPLC. Purified active compound (CNAB) showed control effects against the two-spotted spider mite with 63.45% at $100\;{\mu}g/ml$ concentration. However, it did not exhibit antimicrobial activity against fungi and bacteria.

  • PDF

Antagonistic Assay of Bacillus spp. for Eco-friendly Biological Control of Melon Powdery Mildew (멜론 흰가루병 친환경 생물적 방제를 위한 Bacillus속 균의 길항력 평가)

  • Park, Myung Soo;Lee, Moon Haeng;Lee, Eun Mo;Yun, Hae-Kuen;Kim, Sung Eok;Jeon, Nak Beom
    • The Korean Journal of Mycology
    • /
    • v.46 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • Melon powdery mildew, caused by Podosphaera fusca, is one of the serious diseases of melon plant in Korea. In this study, we evaluated the effect of selected antagonistic bacteria on the inhibition of mycelial growth of various plant pathogens, and control of melon powdery mildew. Based on the 16S rDNA and gyrA gene sequences, the selected antagonistic bacteria, M09, M70, and M99-1, were identified as Bacillus velezensis. These bacteria not only inhibited the mycelial growth of 47~69% in various plant pathogens, but also significantly reduced the incidence of powdery mildew. The three strains selected in this study could be used as potential biological control agents for various plant diseases as well as melon powdery mildew.