DOI QR코드

DOI QR Code

Screening of Bacterial Antagonists to Develop an Effective Cocktail against Erwinia amylovora

  • Choi, Dong Hyuk (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Choi, Hyun Ju (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Kim, Yeon Ju (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lim, Yeon-Jeong (Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Lee, Ingyeong (Applied Biology Program, Division of Bioresource Science, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Duck Hwan (Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • Received : 2022.08.25
  • Accepted : 2022.09.05
  • Published : 2022.09.30

Abstract

Several types of chemical bactericides have been used to control fire blight. However, their excessive usage leads to environmental deterioration. Therefore, several researchers have analyzed antagonistic microorganisms as promising, effective, and safe biological control agents (BCAs). The primary aim of this study was to screen for potential antagonistic bacteria that suppress Erwinia amylovora. Among the 45 isolates studied, 5 strains showed the largest inhibition zone against E. amylovora. 16S rRNA gene sequencing identified them as Bacillus amyloliquefaciens (KPB 15), B. stratosphericus (KPB 21), B. altitudinis (KPB 25), B. safensis (KPB 31), and B. subtilis (KPB 39). KPB 25 and 31 reduced the lesion size of fire blight by 50% in immature apple fruits, and did not show antagonism against each other. Therefore, KPB 25 and 31 were selected to develop an antagonistic mixture against fire blight. Although the mixture with KPB 25 and 31 showed a slightly increased ability to reduce lesion size on immature fruits, they did not exhibit a synergistic effect in reducing E. amylovora population compared to each strain alone. Nevertheless, we have identified these two strains as useful and novel BCAs against fire blight with additional benefits safety and potential in developing a mixture without loss of their activity, owing to the absence of antagonism against each other.

Keywords

Acknowledgement

This work was carried out with the support of Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 320041-05-2-SB010).

References

  1. Aldwinckle, H. S., Bhaskara Reddy, M. V. and Norelli, J. L. 2002. Evaluation of control of fire blight infection of apple blossoms and shoots with SAR inducers, biological agents, a growth regulator, copper compounds, and other materials. Acta Hortic. 590: 325-331.
  2. Bahadou, S. A., Ouijja, A., Karfach, A., Tahiri, A. and Lahlali, R. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microb. Pathog. 117: 7-15. https://doi.org/10.1016/j.micpath.2018.02.011
  3. Bibi, F., Yasir, M., Song, G. C., Lee, S. Y. and Chung, Y. R. 2012. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on oomycetous plant pathogens. Plant Pathol. J. 28: 20-31. https://doi.org/10.5423/PPJ.OA.06.2011.0123
  4. Broggini, G. A. L., Duffy, B., Holliger, E., Scharer, H.-J., Gessler, C. and Patocchi, A. 2005. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. Eur. J. Plant Pathol. 111: 93-100. https://doi.org/10.1007/s10658-004-1423-x
  5. Cabrefiga, J., Bonaterra, A. and Montesinos, E. 2007. Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int. Microbiol. 10: 123-132.
  6. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S. et al. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44. https://doi.org/10.1016/j.jbiotec.2008.10.015
  7. Choi, H. J., Kim, Y, J., Lim, Y.-J. and Park. D. H. 2019. Survival of Erwinia amylovora on surfaces of materials used in orchards. Res. Plant Dis. 25: 89-93. https://doi.org/10.5423/RPD.2019.25.2.89
  8. Choi, H. J., Kim, Y. J. and Park, D. H. 2022a. Extended longevity of Erwinia amylovora vectored by honeybees under in vitro conditions and its capacity for dissemination. Plant Pathol. 71: 762-771. https://doi.org/10.1111/ppa.13489
  9. Choi, J. H., Kim, J.-Y. and Park, D. H. 2022b. Evidence of greater competitive fitness of Erwinia amylovora over E. pyrifoliae in Korean isolates. Plant Pathol. J. 38: 355-365. https://doi.org/10.5423/PPJ.OA.04.2022.0056
  10. Durairaj, K., Velmurugan, P., Park, J.-H., Chang, W.-S., Park, Y.-J., Senthilkumar, P. et al. 2017. Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Microbiol. Lett. 364: fnx225.
  11. Fallahzadeh-Mamaghani, V., Golchin, S., Shirzad, A., Mohammadi, H. and Mohamadivand, F. 2021. Characterization of Paenibacillus polymixa N179 as a robust and multifunctional biocontrol agent. Biol. Control 154: 104505. https://doi.org/10.1016/j.biocontrol.2020.104505
  12. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43: 337-359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  13. Fried, A., Schell, E., Moltmann, E. and Wensing, A. 2013. Control of fire blight in Baden-Wurttenberg at the end of the streptomycin era. Acta Hortic. 1056: 55-56.
  14. Ishimaru, C. A., Klos, E. J. and Brubaker, R. R. 1988. Multiple antibiotic production by Erwinia herbicola. Phytopathology 78: 746-750. https://doi.org/10.1094/Phyto-78-746
  15. Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of Erwinia amylovora strain TS 3128, a Korean strain isolated in an Asian pear orchard in 2015. Microbiol. Resour. Announc. 10: e00694-21.
  16. Kim, S.-H., Lee, S. I., Kong, H. G., Cho, G. and Kwak, Y.-S. 2022. Screening and classification of anti-fire blight pathogen in apple endophytic bacterial library. Korean J. Pestic. Sci. 26: 16-26. (In Korean) https://doi.org/10.7585/kjps.2022.26.1.16
  17. Kunz, S. 2006. Fire blight control in organic fruit growing-systematic investigation of the mode of action of potential control agents. In: Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases, eds. by W. Zeller and C. Ullrich, pp. 249-253. Mitteilungen aus der Biologischen Bundesanstalt fur Land-und Forstwirtschaft, Berlin, Germany.
  18. Lee, S. I., Kim W., Kim, D.-R. and Kwak, Y.-S. 2021. Evaluation of antibacterial and synergistic effect of lichen extracts with antibiotics against fire blight pathogen, Erwinia amylovora. Korean J. Pestic. Sci. 25: 55-62. (In Korean) https://doi.org/10.7585/kjps.2021.25.1.55
  19. McManus, P. S. and Jones, A. L. 1994. Role of wind-driven rain, aerosols, and contaminated budwood in incidence and spatial pattern of fire blight in an apple nursery. Plant Dis. 78: 1059-1066. https://doi.org/10.1094/PD-78-1059
  20. Mikicinski, A., Pulawska, J., Molzhigitova, A. and Sobiczewski, P. 2020. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 156: 257-272. https://doi.org/10.1007/s10658-019-01885-x
  21. Park, D. H., Lee, Y.-G., Kim, J.-S., Cha, J.-S. and Oh, C.-S. 2017. Current status of fire blight caused by Erwinia amylovora and action for its management in Korea. J. Plant Pathol. 99: 59-63.
  22. Park, J., Kim B., Song, S., Lee, Y. W. and Roh, E. 2022. Isolation of nine bacteriophages shown effective against Erwinia amylovora in Korea. Plant Pathol. J. 38: 248-253. https://doi.org/10.5423/PPJ.NT.11.2021.0172
  23. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C.-S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34: 445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
  24. Powney, R., Beer, S. V., Plummer, K., Luck, J. and Rodoni, B. 2011. The specificity of PCR-based protocols for detection of Erwinia amylovora. Aust. Plant Pathol. 40: 87-97. https://doi.org/10.1007/s13313-010-0017-7
  25. Pusey, P. L. 2002. Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis. 86: 639-644. https://doi.org/10.1094/PDIS.2002.86.6.639
  26. Reininger, V., Schoneberg, A., Gravalon, P. and Holliger, E. 2019. Fire blight efficacy field studies in Switzerland. In: 2nd International Symposium on Fire Blight of Rosaceous Plants, eds. by G. Sundin, A. Khan, E. Montesinos, A. Peil, J. Pulawska, F. Rezzonico, et al., p. 19. Traverse City, MI, USA. (Abstract)
  27. Rong, S., Xu, H., Li, L., Chen, R., Gao, X. and Xu, Z. 2020. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pestic. Biochem. Physiol. 162: 69-77. https://doi.org/10.1016/j.pestbp.2019.09.003
  28. Rosello, G., Bonaterra, A., Frances, J., Montesinos, L., Badosa, E. and Montesinos, E. 2013. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum. Eur. J. Plant Pathol. 137: 621-633. https://doi.org/10.1007/s10658-013-0275-7
  29. Sharifazizi, M., Harighi, B. and Sadeghi, A. 2017. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol. Control 104: 28-34. https://doi.org/10.1016/j.biocontrol.2016.10.007
  30. Shemshura, O., Alimzhanova, M., Ismailova, E., Molzhigitova, A., Daugaliyeva, S. and Sadanov, A. 2020. Antagonistic activity and mechanism of a novel Bacillus amyloliquefaciens MB40 strain against fire blight. J. Plant Pathol. 102: 825-833. https://doi.org/10.1007/s42161-020-00515-4
  31. Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., Stockwell, V. O. et al. 2010. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J. Bacteriol. 192: 6486-6487. https://doi.org/10.1128/JB.01122-10
  32. Sunar, K., Dey, P., Chakraborty, U. and Chakraborty, B. 2015. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. J. Basic Microbiol. 55: 91-104. https://doi.org/10.1002/jobm.201300227
  33. van der Zwet, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire Blight: History, Biology, and Management. APS Press, St. Paul, MN, USA. 421 pp
  34. Vanneste, J. L., Cornish, D. A., Yu, J. and Voyle, M. D. 2002. P10c: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees. Acta Hortic. 590: 231-235. https://doi.org/10.17660/ActaHortic.2002.590.33
  35. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  36. Whipps, J. M. and McQuilken, M. P. 2009. Biological control agents in plant disease control. In: Disease Control in Crops: Biological and Environmentally Friendly Approaches, ed. by D. Walters, pp. 27-61. Wiley-Blackwell, Oxford, UK.
  37. Wilson, M. and Lindow, S. E. 1993. Interaction between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83: 117-123. https://doi.org/10.1094/Phyto-83-117
  38. Zengerer, V., Schmid, M., Bieri, M., Muller, D. C., Remus-Emsermann, M. N. P., Ahrens, C. H. et al. 2018. Pseudomonas orientalis F9: a potent antagonist against phytopathogens with phytotoxic effect in the apple flower. Front. Microbiol. 9: 145. https://doi.org/10.3389/fmicb.2018.00145