DOI QR코드

DOI QR Code

Screening of Antagonistic Bacteria Having Antifungal Activity against Brown Spot and Sheath Rot of Rice

벼 깨씨무늬병 및 잎집썩음병에 항진균 활성을 갖는 길항 미생물의 탐색

  • Ryu, Myeong Seon (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Yang, Hee-Jong (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Su-Ji (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Seo, Ji-Won (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
  • 류명선 ((재)발효미생물산업진흥원) ;
  • 양희종 ((재)발효미생물산업진흥원) ;
  • 정수지 ((재)발효미생물산업진흥원) ;
  • 서지원 ((재)발효미생물산업진흥원) ;
  • 정도연 ((재)발효미생물산업진흥원)
  • Received : 2019.05.31
  • Accepted : 2019.07.11
  • Published : 2019.09.30

Abstract

Brown spot and sheath rot of rice are caused by fungal pathogens such as Curvularia lunata, Cochliobolus miyabeanus, and Sarocladium oryzae, and cause losses such as reduced rice yield and quality, which is an enormous problem with serious long-term effects. To search biological control agents of phytopathogenic fungi, five kinds of useful Bacillus-like isolates which are excellent in extracellular enzyme activity and produce siderophore were selected from paddy soil of Sunchang in Korea. The selected isolates were tested for excellent antifungal activity against three of the phytopathogenic fungi that frequently occur in rice, and JSRB 177 strain had the most excellent antifungal activity. Based on the experimental results, JSRB 177 is finally selected as a candidate for biological control and identified to Bacillus subtilis through 16S rRNA sequence analysis. In addition, physiological characteristics of JSRB 177 confirmed by analysis of carbohydrate fermentation patterns and enzyme production ability. Based on the above results, JSRB 177 is expected to be used as a biological control agent for the rice pathogenic fungi. In the future, further studies related to industrialization such as port test and establishment of mass production process are needed.

벼의 깨씨무늬병과 잎집썩음병의 원인균인 Cochliobolus miyabeanus와 Sarocladium oryzae에 의해 발병되며, 깨씨무늬병이 이삭에 발생할 경우Curvularia lunata에 의해 이삭마름병이 추가로 발병하게 되고 한국인의 주식인 쌀의 수확량 감소 및 쌀의 품질 저하와 같은 손실을 초래하여 세계적으로 벼 재배 국가에서는 큰 문제로 장기적으로는 심각한 문제를 초래한다. 따라서, 이러한 식물 병원성 곰팡이의 생물학적 방제를 위해 순창군 논 토양에서 세포외 효소 활성이 우수하고 siderophore를 생산하는 유용미생물 5종을 선별하였다. 5종의 선별 미생물은 벼의 식물 병원성 곰팡이 3종에 대하여 우수한 항진균 활성을 갖고 있었으며, 특히 JSRB 177균주는 가장 우수한 활성을 지녀 최종 균주로 선별되었다. 최종 선별된 JSRB 177균주는 16S rRNA 염기서열 분석을 통하여 Bacillus subtilis로 동정되었으며, 최종적으로 JSRB 177의 당 이용성 및 효소 생산에 대한 분석을 통하여 생리학적 특성을 확인하였다. 향후 포트 시험 및 생산 공정 확립 등 산업화에 연관된 추가 연구가 필요하지만 앞선 결과를 토대로 JSRB 177 균주는 벼 병원성 곰팡이에 대한 생물학적 방제를 위한 소재로 높은 활용이 기대된다.

Keywords

References

  1. Lee AS, Cho YS, Kim IJ, Ham JK, Jang JS. The quality and yield of early maturing rice varieties affected by cultural practices in Gangwon plain region. Korean J Crop Sci 2012;57:233-7. https://doi.org/10.7740/kjcs.2012.57.3.233
  2. Lee T, Lee SH, Kim LH, Ryu JG. Occurrence of fungi and Fusarium mycotoxins in the rice samples from rice processing complexes. Res Plant Dis 2014;20:289-94. https://doi.org/10.5423/RPD.2014.20.4.289
  3. Tann H, Soytong K. Biological control of brown leaf spot disease caused by Curvularia lunata and field application method on rice variety IR66 in Cambodia. Agrivita 2016;39:111-7.
  4. Yeo WH, Lee HS, Kim YK, Shim HS, Jee HJ, Nam KW. Overwintering of the pathogen and factors affecting disease development of rice brown spot caused by Cochliobolus miyabeanus. Res Plant Dis 2004;10:112-6. https://doi.org/10.5423/RPD.2004.10.2.112
  5. Yeh WH, Park YH, Kim LY, Taik JS, Nam YJ, Shim HS, Kim YK, Yeon BY. Comparisons of inorganic amounts in paddy field soil, rice straw and grain with severity of brown spot caused by Cochilobolus miyabeanus. Res Plant Dis 2009;15:41-5. https://doi.org/10.5423/RPD.2009.15.1.041
  6. Ayyadurai N, Kirubakaran SI, Srisha S, Sakthivel N. Biological and molecular variability of Sarocladium oryzae , the sheath rot pathogen of rice (Oryza sativa L.). Curr Microbiol 2005;50:319-23. https://doi.org/10.1007/s00284-005-4509-6
  7. Park YH, Lee YS. Biological control of plant diseases and biodegradation of pesticides by Gliocladium virens. Plant Pathol J 1996;12:255-65.
  8. Keifer MC, Mahurin RK. Chronic neurologic effects of pesticide overexposure. Occup Med 1997;12:291-304.
  9. Shelia HZ, Mary HW, Aron B. Pesticides and cancer. Occup Med 1997;12:269-89.
  10. Han KH, Lee CU, Kim SD. Antagonistic role of chitinase and antibiotic produced by Promicromonospora sp. KH-28 toward F. oxysporum. Korean J Appl Microbiol Biotechnol 1999;27:349-53.
  11. Kim KY, Kim SD. Biological control of Pyricularia oryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Korean J Appl Microbiol Biotechnol 1997;25:396-402.
  12. Lee SY, Lee SB, Kim YK, Kim HG. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor J Pesti Sci 2004;8:71-8.
  13. Lim HS, Lee JM, Kim SD. A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J Microbiol Biotechnol 2002;12:249-57.
  14. Ping L, W Boland. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 2004;9:263-6. https://doi.org/10.1016/j.tplants.2004.04.008
  15. Sansinenea E, Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol Lett 2011;33:1523-38. https://doi.org/10.1007/s10529-011-0617-5
  16. Kang DW, Ryu IH, Han SS. The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens. Kor J Pesti Sci 2012;16:178-86. https://doi.org/10.7585/kjps.2012.16.2.178
  17. Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Edu 2011;12:51-3. https://doi.org/10.1128/jmbe.v12i1.249
  18. Ryu MS, Yang HJ, Kim JW, Jeong SJ, Jeong SY, Eom JS, Jeong DY. Potential probiotics activity of Bacillus spp. From traditional soybean pastes and fermentation characteristics of Cheonggukjang. Korean J Food Preserv 2017;24:1168-79. https://doi.org/10.11002/kjfp.2017.24.8.1168
  19. De Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG. Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol 2006;21:61-8. https://doi.org/10.1111/j.1399-302X.2005.00255.x
  20. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512-26.
  21. Yang HJ, Jeong SJ, Joeng SY, Jeong DY. Screening of antagonistic bacteria having antifungal activity against various phytopathogens. Kor J Mycol 2014;42:333-40. https://doi.org/10.4489/KJM.2014.42.4.333
  22. Lee MW. Root colonization by beneficial Pseudomonas spp. and bioassay of suppression of Fusarium wilt of radish. Kor J Mycol 1997;25:10-20.
  23. Woo SM, Kim SD. Structure identification of siderophore AH18 from Bacillus subtilis AH18, a biocontrol agent of Phytophthora blight disease in red-pepper. Korean J Microbiol Biotechnol 2008;36:326-35.
  24. Kim YK, Hong SJ, Shim CK, Kim MJ, Choi EJ, Lee MH, Park JH, Han EJ, An NH, Jee HJ. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res Plant Dis 2012;18:201-9. https://doi.org/10.5423/RPD.2012.18.3.201
  25. Tominaga Y, Tsujisaka Y. Purification and some prosperities of two chitinase from Streptomyces sorientalis which lyse Rhizopus cell wall. Agric Biol Chem 1976;40:2325-33. https://doi.org/10.1271/bbb1961.40.2325
  26. Zhang CX, X Zhao, YX Jing, T Chida, H Chen, SH Shgen. Phenotypic and biological properties of two antagonist Bacillus subtilis strain. World J Microbiol Biotechnol 2008;24:2179-81. https://doi.org/10.1007/s11274-008-9723-5
  27. Kim BS, Kwang YC. Antifungal effects on plant pathogenic fungi and characteristics of antifungal substances produced by Bacillus subtilis SJ-2 isolated from sclerotia of Rhizoctonia solani. Plant Pathol J 1995;11:165-72.
  28. Chung EJ, Hossain MT, Khan A, Kim KH, Jeon CO, Chung YR. Bacillus oryzicola sp. nov., an endophytic bacterium isolated from the roots of rice with antimicrobial, plant growth promoting, and systemic resistance inducing activities in rice. Plant Pathol J 2015;31: 152-64. https://doi.org/10.5423/PPJ.OA.12.2014.0136
  29. Kim HK, Na HS, Park MS, Oh TK, Lee TS. Occurrence of ofloxacin ester-hydrolyzing esterase from Bacillus niacin EM001. J Mol Catal B: Enzym 2004;27:237-41. https://doi.org/10.1016/j.molcatb.2003.11.007