• Title/Summary/Keyword: biochip

Search Result 163, Processing Time 0.025 seconds

Bio-Electronics

  • Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.123-126
    • /
    • 2000
  • Bio-electronics has been considered as one of the most appropriate candidates to overcome the frequently encountered problems in the development of future electronic devices. It has some advantages such as ultra fast electron transfer rate and high-energy efficiency compared with the silicon-based electronic devices. In silicon-based electronics, there are some of limitations of manufacturing process and physical problems. Bio-electronics can overcome the limitation and problem of silicon-based electronics. Bio-electronics has possible application areas as biosensor, biochip, bio-transistor and bio-computer. In the future, bio-electronics can substitute the silicon-based electronics.

  • PDF

Electrical Property of ZnO Nanorods Grown by Chemical Bath Deposition (CBD 방법에 의해 제조된 ZnO 나노로드의 전기적 특성)

  • Kim, Jin-Ho;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.664-668
    • /
    • 2012
  • ZnO nanorods were successfully fabricated on Zn foil by chemical bath deposition (CBD) method. The ZnO precursor concentration and immersion time affected the surface morphologies, structure, and electrical properties of the ZnO nanorods. As the precursor concentration increased, the diameter of the ZnO nanorods increased from ca. 50 nm to ca. 150 nm. The thicknesses of the ZnO nanorods were from ca. $1.98{\mu}m$ to ca. $2.08{\mu}m$. ZnO crystalline phases of (100), (002), and (101) planes of hexagonal wurtzite structure were confirmed by XRD measurement. The fabricated ZnO nanorods showed a photoluminescene property at 380 nm. Especially, the ZnO nanorods deposited for 6 h in solution with a concentration of 0.005M showed a stronger (101) peak than they did (100) or (002) peaks. In addition, these ZnO nanorods showed a good electrical property, with the lowest resistance among the four samples, because the nanorods were densely in contact and relatively without pores. Therefore, a ZnO nanorod substrate is useful as a highly sensitive biochip substrate to detect biomolecules using an electrochemical method.

Socioeconomic impact of traditional Korean medicine, Pyeongwee-San (KMP6) as an anti-allergic inflammatory drug

  • Song, Young-Hoon;Nam, Sun-Young;Choi, Young-Jin;Kim, Jeong-Hwa;Kim, Young-Sick;Jeong, Hyun-Ja
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.29.1-29.9
    • /
    • 2012
  • The prevalence of allergic disease has been increasing over the past few decades in the majority of Western industrialized nations. There are some socioeconomic disparities regarding allergic disease status and management. Pyeongwee-San (KMP6) is Korean medicine for the treatment of gastrointestinal tract disease. It is known that KMP6 has an improving effect on the spleen and stomach functions in traditional Korean medical theory. Here, we hypothesized that KMP6 could be used to regulate the inflammatory reaction. We show the molecular mechanisms of Pyeongwee-San (KMP6) on inflammatory reactions. A molecular docking simulation showed that hesperidin, component of KMP6, regulate the enzymatic activity by interaction in the active site of caspase-1. KMP6 control the activity of caspase-1 in activated human mast cell line (HMC-1 cells). KMP6 reduced the expression of receptor interacting protein (RIP)-2 in HMC-1 cells. Thymic stromal lymphopoietin protein production and mRNA expression were inhibited by KMP6. In the activated HMC-1 cells, KMP6 suppressed the activation of mitogen-ativated protein kinase and nuclear factor-kappaB. In addition, KMP6 significantly inhibited the expression of inflammatory cytokines. Our findings indicate that KMP6 may attenuate allergic reactions via the regulation of caspase-1/RIP-2 signaling pathway. These studies will help advance the social welfare system.

Integration of immunohistochemical reactions into Electrochemical and Optical Analyses of Biochips (면역 조직화학 반응이 통합된 바이오칩의 전기화학 및 광학적 분석)

  • Choi Hyoung Gil;Hong Eun Kyoung;Lee Seung-Won;Yoon Hyun C.
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.123-128
    • /
    • 2005
  • We have addressed two important issues of immunosensing biochips, including the construction of antibody functionalized suface for efficient affinity reactions and the development of a signal registration strategy that converts biospecific reactions into highly quantifiable electrochemical and/or optical signals. The developed immunoassay reaction is an integrated version of enzyme-mediated immunoprecipitaion reaction, which is widely used in immunohistochemistry, and electrochemical signaling reaction. For the evaluation of analytical performance of fabricated immunosensing biochips, signaling for mouse IgG in antiserum was conducted. Applications of the developed strategy have been found for the evaluation of histology chemicals and for the signal amplification for array-type biochip analysis.

Immune-enhancing effect of Acanthopanax Koreanum and its component, Eleutheroside E on the protein-energy malnourished C57bl/6 mice

  • Kim, Na-Hyung;Kim, Kyu-Yeob;Kim, Jeong-Ah;Kim, Young-Ho;Kang, In-Cheol;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Acanthopanax Koreanum stem (AK) has been used in Korea as a tonic and sedative as well as a drug with ginseng like activities. The purpose of our present study was to investigate the effects of AK extract (AKE) and Eleutheroside E, major component of AKE on an exacerbated immune function through utilization of protein-energy malnutrition (PEM) diet by using forced swimming test (FST). The immobility time were significantly decreased in the AKE or Eleutheroside E-administrated group compared with the control group on the FST (P < 0.05). The level of blood parameters were not changed significantly. PEM-induced weight loss of mice was reduced by oral administration of 500 mg/kg AKE. AKE oral administration improved the nutritional status such as the food efficiency ratio and the adrenal gland weight. AKE treatment significantly increased the production of interferon (IFN)-$\gamma$ compared with unstimulated splenocytes but not interleukin (IL)-4. Eleutheroside E also significantly increased the IFN-$\gamma$ production but not IL-2 and IL-4 in T cell line, MOLT-4 cells. These results suggest that AKE and Eleutheroside E may influence to immune-enhancing through increasing the physical endurance capacity and immune cell activation.

Fabrication of Nanopatterns for Biochip by Nanoimprint Lithography (나노임프린트를 이용한 바이오칩용 나노 패턴 제작)

  • Choi, Ho-Gil;Kim, Soon-Joong;Oh, Byung-Ken;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.433-437
    • /
    • 2007
  • A constant desire has been to fabricate nanopatterns for biochip and the Ultraviolet-nano imprint lithography (UV-NIL) is promising technology especially compared with thermal type in view of cost effectiveness. By using this method, nano-scale to micro-scale structures also called nanopore structures can be fabricated on large scale gold plate at normal conditions such as room temperature or low pressure which is not possible in thermal type lithography. One of the most important methods in fabricating biochips, immobilizing, was processed successfully by using this technology. That means immobilizing proteins only on the nanopore structures based on gold, not on hardened resin by UV is now possible by utilizing this method. So this selective nano-patterning process of protein can be useful method fabricating nanoscale protein chip.

Biochip System for Environmental Monitoring using Nanobio Technology (나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템)

  • Kim, Young-Kee;Min, Jun-Hong;Oh, Byung-Keun;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.378-386
    • /
    • 2007
  • Bio-sensing devices, which are basically integrated and miniaturized assay systems consisted of bioreceptor and signal transducer, are advantageous in several ways. In addition to their high sensitivity, selectivity, simplicity, multi-detection capability, and real time detection abilities, they are both very small and require relatively inexpensive equipments. Two core technologies are required to develop bio-sensing devices; the fabrication of biological receptor module (both of receptor development and immobilisation of them) and the development of signal transducing instruments containing signal generation technique. Various biological receptors, such as enzymes, DNA/RNA, protein, and cell were tried to develop bio-sensing devices. And, the signal transducing instruments have also been extensively studied, especially with regard to electrochemical, optical, and mass sensitive transducers. This article addresses bio-sensing devices that have been developed in the past few years, and also discusses possible future major trends in these devices.

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases (폐암 질환 진단에 활용 가능한 바이오마커 검출용 바이오칩 센서 연구 동향)

  • Lee, Sang Hyuk;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-651
    • /
    • 2018
  • Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.

Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo;Nam, Yun-Suk;Masamichi Fujihira
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.76-85
    • /
    • 2004
  • Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

Inhibitory effects of Polygoni cuspidati rhizoma on Mast Cell-Mediated Anaphylactic Reaction

  • Kang, Tae-Hee;Jeung, Eun-Suk;Choi, In-Young;Jeong, Hyun-Ja;Um, Jea-Young;Kim, Hyung-Min;Hong, Seung-Heon
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Polygoni cuspidati Rhizoma (PCRH) has been used in treatment of menoxenia, skin burn, gallstone, hepatitis, hyperlipidaemia, favus athlete's foot, supperative dermatitis and inflammation. However, its effect in experimental models remains unknown. In this present study, the effect of PCRH for stability on mast cell was analyzed. Two g/kg PCRH inhibited the compound 48/80-induced anaphylaxis by 75%. In addition, PCRH inhibited the tumor necrosis factor-$\alpha$ and interleukin-8 secretion as compared with the phorbol 12-myristate 13-acetate plus calcium ionophore A23187 stimulated human mast cell line, HMC-1 cells. These results suggested PCRH may inhibit mast cell-mediated anaphylactic reaction.

  • PDF