Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.12.664

Electrical Property of ZnO Nanorods Grown by Chemical Bath Deposition  

Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team)
Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team)
Hwang, Jonghee (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team)
Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Optic & Display Materials Team)
Publication Information
Korean Journal of Materials Research / v.22, no.12, 2012 , pp. 664-668 More about this Journal
Abstract
ZnO nanorods were successfully fabricated on Zn foil by chemical bath deposition (CBD) method. The ZnO precursor concentration and immersion time affected the surface morphologies, structure, and electrical properties of the ZnO nanorods. As the precursor concentration increased, the diameter of the ZnO nanorods increased from ca. 50 nm to ca. 150 nm. The thicknesses of the ZnO nanorods were from ca. $1.98{\mu}m$ to ca. $2.08{\mu}m$. ZnO crystalline phases of (100), (002), and (101) planes of hexagonal wurtzite structure were confirmed by XRD measurement. The fabricated ZnO nanorods showed a photoluminescene property at 380 nm. Especially, the ZnO nanorods deposited for 6 h in solution with a concentration of 0.005M showed a stronger (101) peak than they did (100) or (002) peaks. In addition, these ZnO nanorods showed a good electrical property, with the lowest resistance among the four samples, because the nanorods were densely in contact and relatively without pores. Therefore, a ZnO nanorod substrate is useful as a highly sensitive biochip substrate to detect biomolecules using an electrochemical method.
Keywords
ZnO nanorod; I-Vcurve; chemical bath deposition; coating; biochip;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang and D. Zhu, J. Am. Chem. Soc., 126, 62 (2004).   DOI   ScienceOn
2 A. Sugunam, H. C. Warad, M. Boman and J. Dutta, J. Sol-Gel Sci. Technol., 39, 49 (2006).   DOI
3 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, Science, 300, 1249 (2003).   DOI   ScienceOn
4 Y. Zhou, P. J Kelly, A. Postill, O. Abu-Zeid and A. A. Alnajjar, Thin Soild Films, 447-448, 33 (2004).   DOI   ScienceOn
5 M. Jeong, D. Choi, Y. Jin, S. Choi and D. Han, Kor. J. Mater. Res., 22(4), 180 (2012) (in Korean).   DOI   ScienceOn
6 T. M. Barnes, J. Leaf, C. Fry and C. A. Wolden, J. Cryst. Growth, 274, 412 (2005).   DOI   ScienceOn
7 Y. Yang, H. Chen, B. Zhao and X. Bao, J. Cryst. Growth, 263, 447 (2004).   DOI   ScienceOn
8 P. Saravanan, S. Alam and G. N. Mathur, Mater. Lett., 58, 3528 (2004).   DOI   ScienceOn
9 Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett., 396, 21 (2004).   DOI   ScienceOn
10 J. H. Lee, K. H. Ko and B. O. Park, J. Cryst. Growth, 247, 119 (2003).   DOI   ScienceOn
11 R. Ghosh, G. K. Paul and D. Basak, Mater. Res. Bull., 40, 1905 (2005).   DOI   ScienceOn
12 Y. Masuda, N. Kinoshita and K. Koumoto, Electrochim. Acta, 53, 171 (2007).   DOI   ScienceOn
13 Z. L. Wang and J. Song, Science, 312, 242 (2006).   DOI   ScienceOn
14 Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003).   DOI   ScienceOn
15 Y. J. Kim, G. Cao, Y. C. Kim, S. J. Ahn and J. W. Min, J. Kor. Ceram. Soc., 42, 521 (2005) (in Korean).   DOI   ScienceOn
16 J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball and W. Porter, Appl. Phys. A: Mater. Sci. Process., 78, 539 (2004).   DOI
17 L. Vayssiers, K. Keis, S. E. Lindquist and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).   DOI   ScienceOn
18 B. Liu and H. C. Zeng, J. Am. Chem. Soc., 125, 4430 (2003).   DOI   ScienceOn
19 Y. J. Kim, H. Shang and G. Cao, J. Sol-Gel Sci. Technol., 38, 79 (2006).   DOI