Browse > Article
http://dx.doi.org/10.14478/ace.2018.1110

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases  

Lee, Sang Hyuk (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 645-651 More about this Journal
Abstract
Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.
Keywords
Lung cancer disease; blood biomarker; biochip sensors; lateral flow immunoassay; electrochemical biosensor; optical biosensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Liang, T. Ma, A. Thakur, H. Yu, L. Gao, P. Shi, X. Li, H. Ren, L. Jia, S. Zhang, Z. Li, and M. Chen, Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer, Glycobiol., 25, 331-340 (2015).   DOI
2 C. Jiao, L. Cui, A. Ma, N. Li, and H. Si, Elevated serum levels of retinol-binding protein 4 are associated with breast cancer risk: A case-control study, PLoS One, 11, 1-12 (2016).
3 H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform, Anal. Chem., 86, 814-819 (2014).   DOI
4 F. Grossi, M. Loprevite, M. Chiaramondia, P. Ceppa, C. Pera, G. B. Ratto, J. Serrano, G. B. Ferrara, R. Costa, L. Boni, and A. Ardizzoni, Prognostic significance of K-ras, p53, bcl-2, PCNA, CD34 in radically resected non-small cell lung cancers, Eur. J. Cancer, 39, 1242-1250 (2003).   DOI
5 B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics (Basel), 8, 1-18 (2018).
6 M. Spinola, V. P. Leoni, A. Galvan, E. Korsching, B. Conti, U. Pastorino, F. Ravagnani, A. Columbano, V. Skaug, A. Haugen, and T. A. Dragani, Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene, Cancer Lett., 251, 311-316 (2007).   DOI
7 E. Carcereny, J. L. Ramirez, M. Sanchez-Ronco, D. Isla, M. Cobo, T. Moran, I. de Aguirre, T. Okamoto, J. Wei, M. Provencio, G. Lopez-Vivanco, C. Camps, M. Domine, V. Alberola, J. M. Sanchez, B. Massuti, P. Mendez, M. Taron, and R. Rosell, Blood-based CHRNA3 single nucleotide polymorphism and outcome in advanced non-small-cell lung cancer patients, Lung Cancer, 68, 491-497 (2010).   DOI
8 H. D. Hosgood, 3rd, R. Cawthon, X. He, S. Chanock, and Q. Lan, Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility, Lung Cancer, 66, 157-161 (2009).   DOI
9 J. S. Jang, Y. Y. Choi, W. K. Lee, J. E. Choi, S. I. Cha, Y. J. Kim, C. H. Kim, S. Kam, T. H. Jung, and J. Y. Park, Telomere length and the risk of lung cancer, Cancer Sci., 99, 1385-1389 (2008).   DOI
10 P. Gresner, J. Gromadzinska, E. Jablonska, J. Kaczmarski, and W. Wasowicz, Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer, Lung Cancer, 65, 34-40 (2009).   DOI
11 D. G. Weber, G. Johnen, S. Casjens, O. Bryk, B. Pesch, K. H. Jockel, J. Kollmeier, and T. Bruning, Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer, BMC Res. Notes, 6, 1-9 (2013).   DOI
12 D. Madhavan, K. Cuk, B. Burwinkel, and R. Yang, Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures, Front. Genet., 4, 1-13 (2013).
13 S. K. Arya and S. Bhansali, Lung cancer and its early detection using biomarker-based biosensors, Chem. Rev., 111, 6783-6809 (2011).   DOI
14 G. Quero, M. Consales, R. Severino, P. Vaiano, A. Boniello, A. Sandomenico, M. Ruvo, A. Borriello, L. Diodato, S. Zuppolini, M. Giordano, I. C. Nettore, C. Mazzarella, A. Colao, P. E. Macchia, F. Santorelli, A. Cutolo, and A. Cusano, Long period fiber grating nano-optrode for cancer biomarker detection, Biosens. Bioelectron., 80, 590-600 (2016).   DOI
15 A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, Fiber-optic evanescent wave biosensor for the detection of oligonucleotides, Anal. Chem., 68, 2905-2912 (1996).   DOI
16 V. Donzella and F. Crea, Optical biosensors to analyze novel biomarkers in oncology, J. Biophotonics, 4, 442-452 (2011).   DOI
17 S. H. Yang, Biomarkers for lung cancer, J. Lung Cancer, 8, 67 (2009).   DOI
18 D. Tang, Y. Shen, M. Wang, R. Yang, Z. Wang, A. Sui, W. Jiao, and Y. Wang, Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer, Eur. J. Cancer Prev., 22, 540-548 (2013).
19 A. Koulman, G. A. Lane, S. J. Harrison, and D. A. Volmer, From differentiating metabolites to biomarkers, Anal. Bioanal. Chem., 394, 663-670 (2009).   DOI
20 Y. Shi, X. Liu, J. Lou, X. Han, L. Zhang, Q. Wang, B. Li, M. Dong, and Y. Zhang, Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses, Clin. Cancer Res., 20, 6016-6022 (2014).   DOI
21 R. Li, F. Feng, Z. Z. Chen, Y. F. Bai, F. F. Guo, F. Y. Wu, and G. Zhou, Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification, Talanta, 140, 143-149 (2015).   DOI
22 Y. J. Chae and J. S. Park, A comparison of symptoms, depression, and quality of life according to stages of survivorship in lung cancer patients, Asian Oncol. Nurs., 17, 79-86 (2017).   DOI
23 S. Hammerschmidt and H. Wirtz, Lung cancer: Current diagnosis and treatment, Dtsch. Arztebl. Int., 106, 809-818 (2009).
24 B.-B. Park, Cytotoxic chemotherapy for non-small cell lung cancer, Hanyang Med. Rev., 34, 31-36 (2014).   DOI
25 W. Zhou, P. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627-2640 (2014).   DOI
26 C. G. Kim, H. S. Shim, M. H. Hong, Y. J. Cha, S. J. Heo, H. S. Park, J. H. Kim, J. G. Lee, C. Y. Lee, B. C. Cho, and H. R. Kim, Detection of activating and acquired resistant mutation in plasma from EGFR-mutated NSCLC patients by peptide nucleic acid (PNA) clamping-assisted fluorescence melting curve analysis, Oncotarget, 8, 65111-65122 (2017).
27 M. H. Kwon, G. E. Lee, S. J. Kwon, E. Choi, M. J. Na, H. M. Cho, Y. J. Kim, H. J. Sul, Y. J. Cho, and J. W. Son, Identification of DNA methylation markers for NSCLC using Hpall-Mspl methylation microarray, Tuberc. Respir. Dis., 65, 495-503 (2008).   DOI
28 S. Rodriguez-Enriquez, S. C. Pacheco-Velazquez, J. C. Gallardo-Perez, A. Marin-Hernandez, J. L. Aguilar-Ponce, E. Ruiz-Garcia, L. M. Ruizgodoy-Rivera, A. Meneses-Garcia, and R. Moreno-Sanchez, Multi-biomarker pattern for tumor identification and prognosis, J. Cell Biochem., 112, 2703-2715 (2011).   DOI
29 M. Perfezou, A. Turner, and A. Merkoci, Cancer detection using nanoparticle-based sensors, Chem. Soc. Rev., 41, 2606-2622 (2012).   DOI
30 H. V. Tran, B. Piro, S. Reisberg, L. Huy Nguyen, T. Dung Nguyen, H. T. Duc, and M. C. Pham, An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes, Biosens. Bioelectron., 62, 25-30 (2014).   DOI
31 H. Wang, X. Wang, J. Wang, W. Fu, and C. Yao, A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers, Sci. Rep., 6, 1-9 (2016).   DOI
32 M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: Comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702-1707 (2012).   DOI
33 Z. Altintas and I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer, Sens. Actuators B, 188, 988-998 (2013).   DOI
34 L. Y. Yeo, H. C. Chang, P. P. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, 7, 12-48 (2011).   DOI
35 F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015).   DOI
36 S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015).   DOI
37 S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016).   DOI
38 S. Kim, J. W. Park, A. W. Wark, S. H. Jhung, and H. J. Lee, Tandem femto- and nanomolar analysis of two protein biomarkers in plasma on a single mixed antibody monolayer surface using surface plasmon resonance, Anal. Chem., 89, 12562-12568 (2017).   DOI
39 S. Kim and H. J. Lee, Gold nanostar enhanced surface plasmon resonance detection of an antibiotic at attomolar concentrations via an aptamer-antibody sandwich assay, Anal. Chem., 89, 6624-6630 (2017).   DOI
40 T. Singh, S. D. Sharma, and S. K. Katiyar, Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo, PLoS One, 6, 1-13 (2011).
41 W. Lu, L. Tao, Y. Wang, X. Cao, J. Ge, J. Dong, and W. Qian, An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using au nanoparticles coated resin microspheres composed of l-tryptophan and caffeic acid, Ionics, 21, 1141-1152 (2014).
42 Z. Chen, R. Liang, X. Guo, J. Liang, Q. Deng, M. Li, T. An, T. Liu, and Y. Wu, Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles, Biosens. Bioelectron., 91, 60-65 (2017).   DOI
43 W. Qin, K. Wang, K. Xiao, Y. Hou, W. Lu, H. Xu, Y. Wo, S. Feng, and D. Cui, Carcinoembryonic antigen detection with "handing"-controlled fluorescence spectroscopy using a color matrix for point-of-care applications, Biosens. Bioelectron., 90, 508-515 (2017).   DOI
44 F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface, Catal. Today, 295, 41-47 (2017).   DOI
45 X. Miao, Z. Li, A. Zhu, Z. Feng, J. Tian, and X. Peng, Ultrasensitive electrochemical detection of protein tyrosine kinase- 7 by gold nanoparticles and methylene blue assisted signal amplification, Biosens. Bioelectron., 83, 39-44 (2016).   DOI
46 M. Amouzadeh Tabrizi, M. Shamsipur, and L. Farzin, A high sensitive electrochemical aptasensor for the determination of VEGF (165) in serum of lung cancer patient, Biosens. Bioelectron., 74, 764-769 (2015).   DOI
47 J. H. Lim, J. Park, E. H. Oh, H. J. Ko, S. Hong, and T. H. Park, Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood, Adv. Healthc. Mater., 3, 360-366 (2014).   DOI
48 J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: Review, Sens. Actuators B, 54, 3-15 (1999).   DOI
49 Z. Altintas, Y. Uludag, Y. Gurbuz, and I. E. Tothill, Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen, Talanta, 86, 377-383 (2011).   DOI
50 P. Wu, Y. Gao, Y. Lu, H. Zhang, and C. Cai, High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures, Analyst, 138, 6501-6510 (2013).   DOI
51 S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014).   DOI
52 Y. Li, H. J. Lee, and R. M. Corn, Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging, Anal. Chem., 79, 1082-1088 (2007).   DOI
53 J. Zhou, L. Nong, M. Wloch, A. Cantor, J. L. Mulshine, and M. S. Tockman, Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer, Lung Cancer, 34, 341-350 (2001).   DOI
54 J. A. Ho, H. C. Chang, N. Y. Shih, L. C. Wu, Y. F. Chang, C. C. Chen, and C. Chou, Diagnostic detection of human lung cancer- associated antigen using a gold nanoparticle-based electrochemical immunosensor, Anal. Chem., 82, 5944-5950 (2010).   DOI
55 Z. Altintas and I. E. Tothill, DNA-based biosensor platforms for the detection of TP53 mutation, Sens. Actuators B, 169, 188-194 (2012).   DOI
56 F. Liu, H. Zhang, Z. Wu, H. Dong, L. Zhou, D. Yang, Y. Ge, C. Jia, H. Liu, Q. Jin, J. Zhao, Q. Zhang, and H. Mao, Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen, Talanta, 161, 205-210 (2016).   DOI
57 F. Barlési, C. Gimenez, J.-P. Torre, C. Doddoli, J. Mancini, L. Greillier, F. Roux, and J.-P. Kleisbauer, Prognostic value of combination of Cyfra 21-1, CEA and NSE in patients with advanced non-small cell lung cancer, Respir. Med., 98, 357-362 (2004).   DOI
58 F. Alatas, O. Alatas, M. Metintas, O. Colak, E. Harmanci, and S. Demir, Diagnostic value of CEA, CA 15-3, CA 19-9, CYFRA 21-1, NSE and TSA assay in pleural effusions, Lung Cancer, 31, 9-16 (2001).   DOI