Biochip System for Environmental Monitoring using Nanobio Technology

나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템

  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Min, Jun-Hong (Department of Bionano Technology, Kyungwon University) ;
  • Oh, Byung-Keun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Choi, Jeong-Woo (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 김영기 (한경대학교 화학공학과) ;
  • 민준홍 (경원대학교 바이오나노학과) ;
  • 오병근 (서강대학교 화공.생명공학과) ;
  • 최정우 (서강대학교 화공.생명공학과)
  • Published : 2007.12.31

Abstract

Bio-sensing devices, which are basically integrated and miniaturized assay systems consisted of bioreceptor and signal transducer, are advantageous in several ways. In addition to their high sensitivity, selectivity, simplicity, multi-detection capability, and real time detection abilities, they are both very small and require relatively inexpensive equipments. Two core technologies are required to develop bio-sensing devices; the fabrication of biological receptor module (both of receptor development and immobilisation of them) and the development of signal transducing instruments containing signal generation technique. Various biological receptors, such as enzymes, DNA/RNA, protein, and cell were tried to develop bio-sensing devices. And, the signal transducing instruments have also been extensively studied, especially with regard to electrochemical, optical, and mass sensitive transducers. This article addresses bio-sensing devices that have been developed in the past few years, and also discusses possible future major trends in these devices.

바이오센싱 디바이스는 본질적으로 생체인식소재와 신호전달장치로 구성된 집적화, 소형화된 분석시스템으로 많은 장점을 가지고 있다. 고민감도, 선택도, 단순성, 다성분 측정능력, 즉시측정능력 뿐 아니라 매우 작고, 고가의 장치가 필요없는 장점이 있다. 바이오센싱 디바이스의 개발을 위해서는 두 가지의 핵심요소기술이 필요하다. 이것은 생체인식소재모듈의 제작 (리셉터 개발 및 고정화기법)과 신호발생기술을 포함한 신호전달장치의 개발이다. 효소, DNA/RNA, 단백질, 세포 등의 다양한 생체인식소재가 바이오센싱 디바이스 제작을 위해 이용되어져 왔고, 신호전달시스템도 전기화학적, 광학적, mass sensitive transducer를 중심으로 매우 활발히 연구되어져 왔다. 본 고에서는 최근 개발된 바이오센싱디바이스에 대해 다루고, 향후 전망에 대해 논하고자 한다.

Keywords

References

  1. Iwuoha, E. I., M. R. Smyth, and M. E. G. Lyons (1997), Organic Phase Enzyme Electrodes: Kinetics and Analytical Applications, Biosens. Bioelectron. 12, 53-75 https://doi.org/10.1016/0956-5663(96)89089-0
  2. Campanella, L., F. Pacifici, M. P. Sammartino, and M. Tomassetti (1998), A New Organic Phase Bienzymatic Electrode for Lecithin Analysis in Food Products, Bioelectrochem. Bioenerg. 47, 25-38 https://doi.org/10.1016/S0302-4598(98)00186-X
  3. Morales, M. D., M. C. Gonzalez, B. Serra, A. J. Reviejo, and J. M. Pingarro (2005), Composite Amperometric Tyrosinase Biosensors for the Determination of The Additive Propyl Gallate in A Reversed Micellar Medium, Sens. Actuators B 106, 572-579 https://doi.org/10.1016/j.snb.2004.07.023
  4. Stanca, S. E. and I. C. Popescu (2004), Phenols Monitoring and Hill Coefficient Evaluation using Ttyrosinase-Based Amperometric Biosensors, Bioelectrochemistry 64, 47-52 https://doi.org/10.1016/j.bioelechem.2004.02.004
  5. Sachez-Paniagua Lopez, M., E. Lopez-Cabarcos, and B. Lopez-Ruiz (2006), Organic Phase Enzyme Electrodes, Biomolecular Engineering 23, 135-147 https://doi.org/10.1016/j.bioeng.2006.04.001
  6. Sanchez-Ferrer, A., J. N. Rodríguez López, F. Garcia-Canovas, and F. Garcia Carmona (1995), Tyrosinase: A Ccomprehensive Review of Iits Mechanism, Biochim. Biophys. Acta 1247, 1-11 https://doi.org/10.1016/0167-4838(94)00204-T
  7. Cosnier, S., C. Mousty, J. De Melo, A. Lepellec, A. Novoa, B. Polyak, and R. S. Marks (2004), Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate through Avidin-biotin Interactions, Electroanalysis 16, 2022-2029 https://doi.org/10.1002/elan.200303084
  8. Varma, S. and B. Mattiasson (2005), Amperometric Biosensor for the Detection of Hydrogen Peroxide using Catalase Modified Electrodes in Polyacrylamide, J. Biotechnol. 119, 172-180 https://doi.org/10.1016/j.jbiotec.2005.01.020
  9. Mulchandani, A. and S. Pan (1999), Ferrocene-conjugated m-Phenylendiamina Conducting Polymer-incorporated Peroxidase Biosensors, Anal. Biochem. 267, 141-147 https://doi.org/10.1006/abio.1998.2983
  10. Andreescu, S., T. Noguer, V. Magearu, and J. L. Marty (2002), Screen-printed Electrode Based on AChE for the Detection of Pesticides in Presence of Organic Solvents, Talanta 57, 169-176 https://doi.org/10.1016/S0039-9140(02)00017-6
  11. Abad, J. M., F. Pariente, L. Hernàndez, H. D. Abrua, and E. Lorenzo (1998), Determination of Organophosphorus and Carbamate Pesticides Using A Piezoelectric Biosensor, Anal. Chem. 70, 2848-2855 https://doi.org/10.1021/ac971374m
  12. Fennouh, S., V. Casimiri, and C. Burstein (1997), Increased Paraoxon Detection Solvents Using Acetylcholinesterase Inactivation Measured With A Choline Oxidase Biosensor, Biosens. Bioelectron. 12, 97-104 https://doi.org/10.1016/S0956-5663(97)87055-8
  13. Rehak, M., M. Snejdarkova, and T. Hianik (1997), Acetylcholine Minisensor Based on Metal-supported Lipid Bilayers for Determination of Environmental Pollutants, Electroanalysis 9, 1072-1077 https://doi.org/10.1002/elan.1140091408
  14. Choi, J. W., J. Min, W. H. Lee (1997), Signal Analysis of Fiber-optic Biosensor for the Detection of Organophosphorus Compounds in the Contaminated Water, Korean J. of Chem. Eng. 14, 101-108 https://doi.org/10.1007/BF02706068
  15. Trettnak, W., F. Reininger, E. Zinterl, and O. S. Wolfbeis (1993), Fiber-optic Remote Detection of Pesticides and Related Inhibitors of the Enzyme Acetylcholinesterase, Sensors and Actuators B 11, 87-90 https://doi.org/10.1016/0925-4005(93)85242-3
  16. Choi, J. W., J. Min, J. W. Jung, H. W. Rhee, and W. H. Lee (1998), Fiber-optic Biosensor for the Detection of Organophosphorus Compounds using AChE-immobilized Viologen LB Films, Thin Solid Films 327-329, 676-680
  17. Choi, J. W., Y. K. Kim, I. H. Lee, J. Min, and W. H. Lee (2001), Optical Organophosphorus Biosensor Consisting of Acetylcholinesterase/Viologen Hetero Langmuir-Blodgett Film, Biosens. Bioelectron. 16, 937-943 https://doi.org/10.1016/S0956-5663(01)00213-5
  18. Choi, J. W., Y. K. Kim, S. Y. Song, I. H. Lee, and W. H. Lee (2003), Optical Biosensor Consisting of Glutathione-S-transferase for Detection of Captan, Biosens. Bioelectron. 18, 1461-1466 https://doi.org/10.1016/S0956-5663(03)00124-6
  19. Choi, J. W., Y. K. Kim, B. K. Oh, S. Y. Song, and W. H. Lee (2003), Optical Biosensor for Simultaneous Detection of Captan and Organophosphorus Compounds, Biosens. Bioelectron. 18, 591-597 https://doi.org/10.1016/S0956-5663(03)00016-2
  20. Federal Register (1989), Drinking Water, National Primary Drinking Water Regulations; Total Coliform; Total Coliforms (Including Fecal Coliforms and E. coli); Final Rules. Fed. Reg. 54. 27544-27568
  21. APHA, AWWA, and WPCF (1992), Standard Methods for the Examination of Water and Wastewater, 18th ed., A.E. Greeberg, L.S. Clesceri, and A.D. Eaton, Eds., Am. Public health Assoc., Washington DC
  22. Bordner, R., J. Winter, and P. Scarpino (Eds). Microbial Methods for Monitoring the Environment: Water and Eastes, EPA-600/8-78-017, Environmental Monitoring and Support Laboratory, US Enivron, Protect. Agency, Cincinnati
  23. Edberg, S., M. J. Allen, D. B. Smith, and National Collavorative Study (1988), National Field Evaluation of a Defined Substrate Method for the Simultaneous Enumeration of Total Coliforms and Escherichia coli from Drinking Water: Comparison with the Standard Multiple Tube Fermentation Method, Appl. Environ. Microbiol. 54, 1595-1601
  24. Min, J. and A. Baeumner (2002), Highly Sensitive and Specific Detection of Viable Escherichia coli in Drinking Water, Analytical Biochemistry 303, 186-193 https://doi.org/10.1006/abio.2002.5593
  25. Hu, Y., Q. Zhang, and J. C. Meitzer (1999), Rapid and Sensitive Detection of Esherichia coli O157:H7 in Bovine Faeces by a Multiplex PCR, J. Appl. Microbiol. 87, 867-876 https://doi.org/10.1046/j.1365-2672.1999.00938.x
  26. Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-van Dillen, and J. Van der Noordaa (1990), Rapid and Simple Method for Purification of Nucleic Acids, Journal of Clinical Microbiology 28, 495-503
  27. Nathaniel, C. C., S. Stelick, and C. A. Batt (2003), Nucleic Acid Purification Using Microfabricatied Silicon Structures, Biosens. Bioelecron. 19, 59-66 https://doi.org/10.1016/S0956-5663(03)00123-4
  28. Malgorzata, W. A., S. D. Llopis, A. Wheatley, R. L. McCarley, and S. A. Soper (2006), Purification and Preconcentration of Genomic DNA from Whole Lysates Using Photoactivated Polycarbonate (PPC) Microfluidic Chips, Nucleic Acids Research 34, e74-e79
  29. Gusev, Y., J. Sparkowski, A. Raghunathan, H. Ferguson, Jr., J. Montano, N. Bogdan, B. Schweitzer, S. Wiltshire, S. F. Kingsmore, W. Maltzman, and V. Wheeler (2003), Rolling Circle Amplification -A New Approach to Increase Sensitivity for Immunohistochemistry and Flow Cytometry, American Journal of Pathology 159, 63-69
  30. Cao, Y. C., R. Jin, C. S. Thaxton, and C. A. Mirkin (2005), A Two-color-change, Nanoparticle-based Method for DNA Detection, Talanta 67, 449-455 https://doi.org/10.1016/j.talanta.2005.06.063
  31. Williams, J. M., M. Trope, D. J. Caplan, and D. C. Shugars (2006), Detection and Quantitation of E. faecalis by Real-time PCR (qPCR), Reverse Transcription-PCR (RT-PCR), and Cultivation During Endodontic Treatment, Journal of Endodontics 32, 715-721 https://doi.org/10.1016/j.joen.2006.02.031
  32. Panelli, S., G. Damiani, L. Espen, G. Micheli, and V. Sgaramella (2006), Towards the Analysis of The Genomes of Single Cells: Further Characterisation of the Multiple Displacement Amplification, Gene 372, 1-7 https://doi.org/10.1016/j.gene.2006.01.032
  33. Yang, J. M., J. Bell, Y. Huang, M. Tirado, D. Thomas, A. H. Forster, R. W. Haigis, P. D. Swanson, B. R. Wallace, B. Martinsons, and M. Krihak (2002), An Integrated, Stacked Microlaboratory for Biological Agent Detection with DNA and Immunoassays, Biosens. Bioelectron. 17, 605-618 https://doi.org/10.1016/S0956-5663(02)00023-4
  34. Maylin, S., M. Martinot-Peignoux, N. Boyer, M. P. Ripault, C. Féray, M. H. Nicolas-Chanoine, and P. Marcellin (2006), 595 Evidence for Eradication of HCV, Assessed with Transcription Mediated Amplification (TMA), in Chronic Hepatitis C Patients with Sustained Virological Response to Therapy, Journal of Hepatology 44, S221
  35. Baeumner, A. J., R. N. Cohen, V. Miksic, and J. Min (2003), RNA Biosensor for the Rapid Detection of Viable Escherichia coli in Drinking Water, Biosens. Bioelectron. 18, 405-413 https://doi.org/10.1016/S0956-5663(02)00162-8
  36. Jeong, S. C., I. S. Pack, E. Y. Cho, E. S. Youk, S. Park, W. K. Yoon, C. G. Kim, Y. D. Choi, J. K. Kim, and H. M. Kim (2007), Molecular Analysis and Quantitative Detection of a Transgenic Rice Line Expressing a Bifunctional Fusion TPSP, Food Control 18, 1434-1442 https://doi.org/10.1016/j.foodcont.2006.10.007
  37. Pen, J. (2007), Voltametric Detection of DNA Hybridization Using a Non-competitive Enzyme Linked Assay, Biochem. Eng. J. 35, 183-190 https://doi.org/10.1016/j.bej.2007.01.012
  38. Edwards K. A. and A. J. Baeumner (2006), Analysis of Liposomes, Talanta 68, 1432-1441 https://doi.org/10.1016/j.talanta.2005.08.031
  39. Stillitano, F., A. Mugelli, E. Cerbai, and S. Vanucci (2007), Quantification of Midkine Gene Expression in Patella caerulea (Mollusca, Gastropoda) Exposed to Cadmium Estuarine, Coastal and Shelf Science 75, 120-124 https://doi.org/10.1016/j.ecss.2007.02.021
  40. Dyer, J., D. M. Chisenhall, and C. N. Mores (2007), A Multiplexed TaqMan Assay for the Detection of Arthropod-borne Flaviviruses, Journal of Virological Methods 145, 9-13 https://doi.org/10.1016/j.jviromet.2007.05.001
  41. Fodes-Papp, Z., B. Angerer, W. Ankenbauer, and R. Rigler (2001), Fluorescent High-density Labeling of DNA: Error-Free Substitution for a Normal Nucleotide, J. Biotechnol. 86, 237-253 https://doi.org/10.1016/S0168-1656(00)00416-8
  42. Chen, W. Y., W. P. Hu, Y. D. Su, A. Taylor, S. Jiang, and G. L. Chang (2007), A Multispot DNA Chip Fabricated with Mixed ssDNA/oligo (ethylene glycol) Self-assembled Monolayers for Detecting the Effect of Secondary Structures on Hybridization by SPR Imaging, Sensors and Actuator B 125, 607-614 https://doi.org/10.1016/j.snb.2007.03.006
  43. Jin, Y., W. Lu, J. Hu, X. Yao, and J. Li (2007), Site-specific DNA Cleavage of EcoRI Endounclease Probed by Electrochemical Analysis Using Ferrocene Capped Gold Nanoparticles as Reporter, Electrochemistry Communications 9, 1086-1090 https://doi.org/10.1016/j.elecom.2006.12.028
  44. Kerman, K., Y. Morita, Y. Takamura, and E. Tamiya (2003), Label-free Electrochemical Detection of DNA Hybridization on Gold Electrode, Electrochemistry Communications 5, 887-891 https://doi.org/10.1016/j.elecom.2003.08.013
  45. Daniel, S., T. P. Raoa, K. S. Raob, S. U. Rani, G. R. K. Naidu, H. Y. Lee, and T. Kawai (2007), A Review of DNA Functionalized/grafted Carbon Nanotubes and Their Characterization, Sensors and Actuators B 112, 672-682
  46. Andreu, A., J. W. Merkert, L. A. Lecaros, B. L. Broglin, J. T. Brazell, and M. El-Kouedi (2006), Detection of DNA Oligonucleotides on Nanowire Array Electrodes Using Chronocoulometry, Sensors and Actuators B 114, 1116-1120 https://doi.org/10.1016/j.snb.2005.07.072
  47. Rhee, M. and M. A. Burns (2007), Nanopore Sequencing Technology: Research Trends and Applications, Trends in biotechnology 24, 580-586 https://doi.org/10.1016/j.tibtech.2006.10.005
  48. Im, H., X. J. Huang, B. Gu, and Y. K. Choi (2007), A Dielectric-modulate, Nature Nanotechnology 2, 430-434 https://doi.org/10.1038/nnano.2007.180
  49. Kim, Y. R., J. Min, I. H. Lee, S. Kim, A. G. Kim, K. Kim, K. Namkoong, and C. Ko (2007), Nanopore Sensor for Fast Label-free Detection of Short Double-stranded DNAs, Biosens. Bioelectron. 22, 2926-2931 https://doi.org/10.1016/j.bios.2006.12.003
  50. Carrascosa, L. G. (2006), Nanomechanical Biosensor: A New Sensing Tool, Trends in Analytical Chemistry: TrAC 25, 196-206 https://doi.org/10.1016/j.trac.2005.09.006
  51. Ha, K. S. and J. S. Yuk, (2004), Nano-bio Technology and Protein Chips, Trends in Medical Research 11, 5-14
  52. Blaws, A. S. and W. M. Reichert (1998), Protein Patterning, Biomaterials 19, 595-609 https://doi.org/10.1016/S0142-9612(97)00218-4
  53. MacBeath, G. and S. L. Schreiberet (2000), Printing Proteins as Microarrays for High-Throughput Function Determination, Science 289, 1760-1763
  54. Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, W. Gerstein, and M. Snyder (2001), Global Analysis of Protein Activities Using Proteome Chips, Science 293, 2101-2105 https://doi.org/10.1126/science.1062191
  55. Kukar, T., S. Eckenrode, Y. Gu, W. Lian, M. Megginson, J. X. She, and D. Wu (2002), Protein Microarrays to Detect Protein-protein Interactions Using Red and Green Fluorescent Proteins, Anal. Biochem. 306, 50-54 https://doi.org/10.1006/abio.2002.5614
  56. Mitchell, P. (2002), A Perspective on Protein Microarrays, Nat. Biotechnol. 20, 225-229 https://doi.org/10.1038/nbt0302-225
  57. Zhu, H. and M. Snyder (2003), Protein Chip Technology, Curr. Opin. Chem. Biol. 7, 55-63 https://doi.org/10.1016/S1367-5931(02)00005-4
  58. Kim, Y. K., B. K. Oh, and J. W. Choi (2004), Prospective of Industrial Chemistry 7, 1-8
  59. Service, R. F. (2003), Protein Arrays Step Out of DNA's Shadow, Science 289, 1673-1675 https://doi.org/10.1126/science.289.5485.1673
  60. Feng, H. P. (2000), A Protein Microarray, Nature Structure Biology 7, 829-837 https://doi.org/10.1038/79570
  61. Synder, M. and S. Field (2003), Protein Analysis on A Proteomic Scale, Nature 422, 208-215 https://doi.org/10.1038/nature01512
  62. Kodadek, T. (2001), Protein Microarrays: Prospects and Problems, Chem. Biol. 8, 105-116 https://doi.org/10.1016/S1074-5521(00)90067-X
  63. Yuk, J. S., S. J. Yi, H. G. Lee, H. J. Lee, Y. M. Kim, and K. S. Ha (2003), Characterization of Surface Plasmon Resonance Wavelength by Changes of Protein Concentration on Protein Chips, Sensor and Actuator B 422, 161-163
  64. Yuk, J. S. and K. S. Ha (2004), Analysis of Immunoreactions on Protein Arrays by Using Wavelength-Interrogation-Based Surface Plasmon Resonance Sensors, J. Korean Phys. Soc. 45, 1104-1108
  65. Warren, E. N., P. J. Elms, C. E. Parker, and C. H. Borchers (2004), Development of a Protein Chip: A MS-Based Method for Quantitation of Protein Expression and Modification Levels Using an Immunoaffinity Approach, Anal. Chem. 76, 4082-4092 https://doi.org/10.1021/ac049880g
  66. Ferretti, S. S., D. A. Russel, K. E. Sapsford, and D. J. S. Richardson (2000), Self-assembled Monolayers: A Versatile Tool for the Formulation of Bio-surfaces, Trends. Anal. Chem. 19, 530-540 https://doi.org/10.1016/S0165-9936(00)00032-7
  67. Oh, B. K., Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J. W. Choi (2003), Immunosensor for Detection of Legionella pneumophila using Surface Plasmon Resonance, Biosens. Bioelectron. 18, 605-611 https://doi.org/10.1016/S0956-5663(03)00032-0
  68. Ruiz-Taylor, L. A., T. L. Martin, F. G. Zaugg, K. Witte, P. Indermuhle, S. Nock, and P. Wagner (2001), Monolayers of Derivatized Poly(L-lysine)-grafted Poly(ethylene glycol) on Metal Oxides as a Class of Biomolecular Interfaces, Proc. Natl. Acad. Sci. 98, 852-857
  69. Sigal, G. B., C. Bamdad, A. Barberis, J. Strominger, and G. M. Whitesides (1996), A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance, Anal. Chem. 68, 490-497 https://doi.org/10.1021/ac9504023
  70. Salaita, K., Y. Wang, and C. A. Mirkin (2007), Applications of Dip-pen Nanolithography, Nature Nanotechnology 2, 145-155 https://doi.org/10.1038/nnano.2007.39
  71. Chen C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber (1997), Geometric Control of Cell Life and Death, Science 276, 1425-1428 https://doi.org/10.1126/science.276.5317.1425
  72. Kim, H. S., Y. M. Bae, Y. K. Kim, B. K. Oh, and J. W. Choi (2006), Antibody Layer Fabrication for Protein Chip to Detect E. coli O157:H7 Using Microcontact Printing Technique, J. Microbiol. Biotechnol. 16, 141-144 https://doi.org/10.1159/000094024
  73. Jiang, X. Y., R. Ferrigno, M. Mrksich, and G. M. Whitesides (2003), Electrochemical Desorption of Self-assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements, J. Am. Chem. Soc. 125, 2366-2367 https://doi.org/10.1021/ja029485c
  74. Lee, J. H., C. H. Youn, B. . Kim, and M. B. Gu (2007), An Oxidative Stress-specific Bacterial Cell Array Chip for Toxicity Analysis, Biosens. Bioelectron. 22, 2223-2229 https://doi.org/10.1016/j.bios.2006.10.038
  75. Choi, J. W., Y. S. Nam, and M. Fujihira (2004), Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices, Biotechnol. Bioprocess Eng. 9, 76-85 https://doi.org/10.1007/BF02932988