• Title/Summary/Keyword: bio-potential

Search Result 1,477, Processing Time 0.032 seconds

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction

  • Li, Yi;Jung, Nan-Young;Yoo, Jae Cheal;Kim, Yul;Yi, Gwan-Su
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.458-463
    • /
    • 2018
  • The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu;Mok, Hyejung;Yeo, Woon-Seok;Ahn, Joong-Hoon;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.599-609
    • /
    • 2021
  • Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces

  • Lee, Namil;Hwang, Soonkyu;Lee, Yongjae;Cho, Suhyung;Palsson, Bernhard;Cho, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.667-686
    • /
    • 2019
  • Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.

Single nucleotide polymorphism marker combinations for classifying Yeonsan Ogye chicken using a machine learning approach

  • Eunjin, Cho;Sunghyun, Cho;Minjun, Kim;Thisarani Kalhari, Ediriweera;Dongwon, Seo;Seung-Sook, Lee;Jihye, Cha;Daehyeok, Jin;Young-Kuk, Kim;Jun Heon, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.830-841
    • /
    • 2022
  • Genetic analysis has great potential as a tool to differentiate between different species and breeds of livestock. In this study, the optimal combinations of single nucleotide polymorphism (SNP) markers for discriminating the Yeonsan Ogye chicken (Gallus gallus domesticus) breed were identified using high-density 600K SNP array data. In 3,904 individuals from 198 chicken breeds, SNP markers specific to the target population were discovered through a case-control genome-wide association study (GWAS) and filtered out based on the linkage disequilibrium blocks. Significant SNP markers were selected by feature selection applying two machine learning algorithms: Random Forest (RF) and AdaBoost (AB). Using a machine learning approach, the 38 (RF) and 43 (AB) optimal SNP marker combinations for the Yeonsan Ogye chicken population demonstrated 100% accuracy. Hence, the GWAS and machine learning models used in this study can be efficiently utilized to identify the optimal combination of markers for discriminating target populations using multiple SNP markers.

The Strategy for the Development of Bio-Resources Utilizing Sericultural Products and Insects

  • Lee, Won-Chu;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • Experiments related to the field of sericulture started in the years 1900, in Korea. The sericultural experimental station in Korea was first organized among agricultural fields in Korea, indicating that sericulture in Korea was regarded as an important field of agriculture. Sericulture has been devoted to a great deal for the improvement of Korean economy during the past 100 years even under the coarse social circumstances caused particularly by the Korean War, However, the traditional Korean sericulture, aimed to produce silk yarn, was weakened, because of several reasons such as diminishment in silk consumption, increased labor charge in Korea, and so on. After this difficulty time, the Korean sericulture was revolutionized by shifting into functional sericulture from 1995, and the Korean sericulture now plays an important role for the improvement of human health. Mulberry tree, silkworm, and silk have a boundless potential to be developed as resources. We expect the know-how obtained through silkworm research would expand to the other insect research too. Thus, an area of entomological industry is hoped to prosper owing to insect research as well as sericulture. Mulberry tree is known to possess many bio-active substances, so it can be utilized as a resource for substitute medicine and a raw material for the functional food. In addition, an invention of genetically engineered mulberry variety, which will produce more bioactive substances, is expected. Silkworm is one of the most extensively studied insect organisms on the genome so far, Thus, silkworm is expected to be an "insect bio-factory", enabling mass-production of useful proteins by transformation, in which useful foreign genes are assimilated into silkworm. Silk can be transformed into several phases, because it possesses useful functional groups, which are sensitive to chemical reaction. Also, because silk fibrin itself is protein, it has a superior applicability as tissue membrane. Due to this usefulness, many researchers are now working on the silk as food, cosmetic, medical resource, and bioengineering resource, and even an expanded application is expected using silk in the future. Until now, the researches on insects were largely focused on the prevention of the damage caused by pest, instead of a beneficial aspect. However, insects are thought to be the fourth natural resource in the world, possessing unlimited potential as world resources in the near future. Therefore, our entomological research effort should be focused on the subject with potential for industrialization. Such subject includes selecting the insect species useful for environmental evaluation, construction of environment-friendly agricultural ecosystem, pollen mediation, pet, and advanced bio-resources.

  • PDF

Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young;Park, Jong-Hwa;Paik, Hyun-Dong;Nah, Seung-Yeol;Kim, Darrick S.H.L.;Han, Ye Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death (시금치 추출물에 의한 뇌세포 사멸 보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Shin, Heung-Mook;Kwon, Taeg-Kyu;Lee, Jin-Man;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • To investigate the potential therapeutic value of a plant extract against amyloid ${\beta}-peptide-induced$ cell damage, we first screened extracts of 250 herbs, and finally selected a water extract of Spinacia oleracea for further study. This extractshowed the potential to inhibit the reactions of oxidants. We measured the angiotensin-converting-enzyme (ACE) inhibitory activity of the extract, and assessed the ability of the extract to protect neuronal cells from chemical-induced cell death. SH-SY5Y neuroblastoma cells were used in this assay. The extract exerted protective effects on $H_2O_2-induced$ cell death, when $H_2O_2$ was used at 100 M, 200 M, and 500 M (protection of 87%, 73%, and 58%, respectively). When 50 M of amyloid ${\beta}-peptide$ was added to the test cells, however, the extract had no protective effect on cell death. The extract inhibited ACE activity in a dose-dependent manner, and exhibited potent protection against the deleterious effects of $H_2O_2$. In sum, these results suggest that a water extract of Spinacia oleracea has the potential to afford protection against chemical-induced neuronal cell death, and the extract may be useful in the treatment of neurodegenerative diseases. The precise molecular mechanism of neuroprotection is under investigation.

Assessing the Potential Utilization Value of Peony Byproducts: Comparative Evaluation of Bioactivities in Peony Seed Oil and Cake Extract (작약 종자 오일 및 유박 추출물의 생리활성 비교를 통한 작약 부산물의 잠재적 이용 가치 평가)

  • Hamin Lee;Kyungtae Park;Huijin Heo;Junsoo Lee;Kwang-Yup Kim;Ju-Sung Cho
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.446-454
    • /
    • 2023
  • This study aimed to assess the potential use of Paeonia lactiflora Pall. seed cake (PSC). The extraction yield of the PSC extract ranged from 22% to 45%, depending on the extraction solvent used. The PSC extract showed significantly higher levels of total polyphenols and flavonoids contents, and radical scavenging compared to the P. lactiflora seed oil (PSO) extract. The antibacterial activity of the PSC extract was superior to that of the positive control and remained effective for up to 48 hours. Furthermore, when the PSC extract was applied, it significantly reduced the inflammatory response induced by LPS, demonstrating the anti-inflammatory activity of PSC. This study confirmed the effective bioactivity not only in PSO, but also in the PSC extract, highlighting the potential of PSC as a bio-health ingredient.

Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering

  • Sinha, Arvind;Martin, Elizabeth M.;Lim, Ki-Taek;Carrier, Danielle Julie;Han, Haewook;Zharov, Vladimir P.;Kim, Jin-Woo
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.373-393
    • /
    • 2015
  • Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs' unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.