DOI QR코드

DOI QR Code

Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering

  • Sinha, Arvind (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas) ;
  • Martin, Elizabeth M. (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas) ;
  • Lim, Ki-Taek (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas) ;
  • Carrier, Danielle Julie (Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville) ;
  • Han, Haewook (Department of Electrical Engineering, Pohang University of Science & Technology) ;
  • Zharov, Vladimir P. (Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences) ;
  • Kim, Jin-Woo (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas)
  • Received : 2015.10.13
  • Accepted : 2015.11.16
  • Published : 2015.12.01

Abstract

Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs' unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.

Keywords

References

  1. Almeida, P. L., S. Kundu, J. P. Borges, M. H. Godinho and J. L. Figueirinhas. 2009. Electro-optical light scattering shutter using electrospun cellulose based nano and microfibers. Applied Physics Letters 95(4):043501-043504. https://doi.org/10.1063/1.3186640
  2. Araki, J., M. Wada and S. Kuga. 2001. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21-27. https://doi.org/10.1021/la001070m
  3. Araki, J., M. Wada, S. Kuga and T. Okano. 2000. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413-2415. https://doi.org/10.1021/la9911180
  4. Aulin, C., S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Osterberg, et al. 2009. Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25(13):7675-7685. https://doi.org/10.1021/la900323n
  5. Barud, H. G. Oliveira., H. da S. Barud, M. Cavicchioli, et al. 2015. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers 128:41-51. https://doi.org/10.1016/j.carbpol.2015.04.007
  6. Beck-Candanedo, S., M. Roman and D. G. Gray. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054. https://doi.org/10.1021/bm049300p
  7. Bhattacharya, M., M. M Malinen, P. Lauren, Y.-R. Lou, S. W. Kuisma, L. Kanninen, et al. 2012. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of Control Release 164(3):291-298. https://doi.org/10.1016/j.jconrel.2012.06.039
  8. Bondeson, D. and K. Oksman. 2007. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Composite Interfaces 14(7-9):617-630. https://doi.org/10.1163/156855407782106519
  9. Boufi, S. 2014. Nanofibrillated cellulose: sustainable nanofiller with broad potentials use. In: Biomass and Bioenergy eds. K. R. Hakeem, M .Jawaid and U. Rashid, pp. 267-305. Springer International Publishing Switzerland.
  10. Brinchi, L., F. Cotana, E. Fortunati and J. M. Kenny. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers 94(1):154-169. https://doi.org/10.1016/j.carbpol.2013.01.033
  11. Cao, X., B. Ding, J. Yu and S. S. Al-Deyab. 2012. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydrate Polymer 90(2):1075-1080. https://doi.org/10.1016/j.carbpol.2012.06.046
  12. Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899-904. https://doi.org/10.1021/bm0610368
  13. Chang, C.-W. and M.-J. Wang. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chemical Engineering 1(9):1129-1134. https://doi.org/10.1021/sc400054v
  14. Chang, H., A.-T. Chien, H. C. Liu, P.-H. W. Wang, B. A. Newcomb and S. Kumar. 2015. Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomaterials Science & Engineering 1(7):610-616. https://doi.org/10.1021/acsbiomaterials.5b00161
  15. Chawla, P. R., I. B. Bajaj, S. A. Survase and R. S. Singhal. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47(2):107-124.
  16. Chen, H. 2014. Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose: theory and practices, pp. 25-71. Springer Netherlands.
  17. Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter 6(1):417. https://doi.org/10.1186/1556-276X-6-417
  18. Cranston, E. D. and D. G. Gray. 2006. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522-2530. https://doi.org/10.1021/bm0602886
  19. Dalton, L. R., P. A. Sullivan and D. H. Bale. 2010. Electric field poled organic electro-optic materials: State of the art and future prospects. Chemical Reviews 110(1):25-55. https://doi.org/10.1021/cr9000429
  20. de la Zerda, A., J.-W. Kim, E. I. Galanzha, S. S. Gambhir and V. P. Zharov. 2011. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test, and photothermal theranostics. Contrast Media & Molecular Imaging 6:346-369 https://doi.org/10.1002/cmmi.455
  21. de Nooy, A. E. J., A. C. Besemer and H. van Bekkum. 1994. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recueil des Travaux Chimiques des Pays-Bas 113(3):165-166.
  22. Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327-2346. https://doi.org/10.1021/bm500524s
  23. Dong, S. and M. Roman. 2007. Fluorescently labeled cellulose nanocrystals for bioimaging applications. Journal of American Chemical Society 129 (45):13810-13811. https://doi.org/10.1021/ja076196l
  24. Duchesne L. C. and D. W. Larson. 1989. Cellulose and the evolution of plant life. BioScience 39(4):238-241. https://doi.org/10.2307/1311160
  25. Dufresne, A. 2013. Nanocellulose: A new ageless bionanomaterial. Materials Today 16(6):220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  26. Dugan, J. M., J. E. Gough and S. J. Eichhorn. 2010. Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498-2504. https://doi.org/10.1021/bm100684k
  27. Dugan, J. M., R. F. Collins, J. E. Gough and S. J. Eichhorn. 2013. Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomaterialia 9(1):4707-4715. https://doi.org/10.1016/j.actbio.2012.08.050
  28. Ehrenberg, R. 2015. Global count reaches 3 trillion trees. Nature doi:10.1038/nature.2015.18287.
  29. Eichhorn S. J. and G. R. Davis. 2006. Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291-307. https://doi.org/10.1007/s10570-006-9046-3
  30. Fan, X., T. Zhang, Z. Zhao, H. Ren, Q. Zhang, Y. Yan and G. Lv. 2013. Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. Journal of Applied Polymer Science 129(2):595-603. https://doi.org/10.1002/app.38702
  31. Farr, T. D., C. H. Lai, D. Grünstein, G. Orts-Gil, C. Wang, P. Boehm-Sturm, P. H. Seeberger and C. Harms. 2014. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target seletin. Nano Letters 14(4):2130-2134. https://doi.org/10.1021/nl500388h
  32. Frigell, J., I. Garcia, V. Gomez-Vallejo, J. Llop and S. Penades. 2014. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of American Chemical Society 136(1):449-457. https://doi.org/10.1021/ja411096m
  33. Gui, Z., H. Zhu, E. Gillette, X. Han, G. W. Rubloff, L. Hu and S. B. Lee. 2013. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037-6046. https://doi.org/10.1021/nn401818t
  34. Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: chemistry, self-assembly and applications. Chemical Review 110(6):3479-3500. https://doi.org/10.1021/cr900339w
  35. Hanley, S. J., J. Giasson, J.-F. Revol and D. G. Gray. 1992. Atomic force microscopy of cellulose microfibrils: Comparison with transmission electron microscopy. Polymer 33(21):4639-4642. https://doi.org/10.1016/0032-3861(92)90426-W
  36. Hao, N., K. Neranon, O. Ramstrom and M. Yan. 2015. Glyconanomaterials for biosensing applications. Biosensorsand Bioelectronics. doi:10.1016/j.bios.2015.07.031.
  37. Hasani, M., E. D. Cranston, G. Westmana and D. G. Gray. 2008. Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238-2244. https://doi.org/10.1039/B806789A
  38. Hassan, M. L., C. M. Moorefield, H. S. Elbatal, G. R. Newkome, D. A. Modarelli and N. C. Romano. 2012. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Materials Science and Engineering: B 177(4):350-358. https://doi.org/10.1016/j.mseb.2011.12.043
  39. Heux, L., G. Chauve and C. Bonini. 2008. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16 (21):8210-8212. https://doi.org/10.1021/la9913957
  40. Hubbe, M. A., O. J. Rojas, L. A. Lucia and M. Sain. 2008. Cellulosic nanocomposites: A review. BioResources 3(3):929-980.
  41. Jackson, J. K., K. Letchford, B. Z. Wasserman, L. Ye, W. Y. Hamad and H. M. Burt. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine 6:321-330.
  42. Jarvis, M. 2003. Cellulose stacks up. Nature 426:611-612. https://doi.org/10.1038/426611a
  43. Jiang, F. and Y.-L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122:60-68. https://doi.org/10.1016/j.carbpol.2014.12.064
  44. Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3:12366-12375. https://doi.org/10.1039/c3ra41646a
  45. John, M. J. and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71(3):343-364. https://doi.org/10.1016/j.carbpol.2007.05.040
  46. Jokerst, J. V., D. Van de Sompel, S. E. Bohndiek and S. S. Gambhir. 2014. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2(3):119-127. https://doi.org/10.1016/j.pacs.2014.07.001
  47. Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose based bio and nanocomposites: A review. International Journal of Polymer Science 2011:1-35.
  48. Kaushik, M., K. Basu, C. Benoit, C. M. Cirtiu, H. Vali and A. Moores. 2015. Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. Journal of American Chemical Society 137(19):6124-6127. https://doi.org/10.1021/jacs.5b02034
  49. Keshk, S. M. A. S. 2014. Bacterial cellulose production and its industrial applications. Bioprocessing & Biotechniques 4(2):1-10.
  50. Khalil, H. P. S. A., A. H. Bhat and A. F. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2):963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  51. Khan, A., R. A. Khan, S. Salmieri, C . Le T ien, B. Riedl, J . Bouchard, G. Chauve, V. Tan, M. R. Kamal and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4):1601-1608. https://doi.org/10.1016/j.carbpol.2012.07.037
  52. Kim, H. N., A. Jiao, N. S. Hwang, M. S. Kim, D. H. Kang, D.-H. Kim and K.-Y Suh. 2014. Emerging nanotechnology approaches in tissue engineering and regenerative medicine. International Journal of Nanomedicine. 9(S1):1-5. https://doi.org/10.2217/nnm.13.186
  53. Kim, J., G. Montero, Y. Habibi, J. P. Hinestroza, J. Genzer, D. S. Argyropoulos and O. J. Rojas. 2009. Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering & Science 49(10):2054-2061. https://doi.org/10.1002/pen.21417
  54. Kim, J. and S. Yun. 2006. Discovery of cellulose as a smart material. Macromolecules 39(12):4202-4206. https://doi.org/10.1021/ma060261e
  55. Kim, J.-W. and R. Deaton. 2013. Molecular self-assembly of multifunctional nanoparticle composites with arbitary shapes and functions: Challenges and strategies. Particle and Particle Systems Characterization 30(2):117-132. https://doi.org/10.1002/ppsc.201200129
  56. Kim, J.-W. and S. Tung. 2015. Bio-hybrid micro/nanodevices powered by flagellar motor: Challenges and strategies. Frontiers in Bioengineering and Biotechnology 3:100. DOI: 10.3389/fbioe.2015.00100.
  57. Kim, J.-W., E. I. Galanzha and V. P. Zharov. 2014b. In. vivo photoacoustic detection of circulating cells and nanoparticles. In: Frontiers of Nanobiomedical Research-Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments. V. P. Torchilin (ed). World Scientific Publishing Co.
  58. Kim, J.-W., E. I. Galanzha, D. A. Zaharoff, R. J. Griffin and V. P. Zharov. 2013. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Molecular Pharmaceutics 10(3):813-830. https://doi.org/10.1021/mp300577s
  59. Kim, J.-W., J.-H. Kim and R. Deaton. 2011. DNA-linked nanoparticle building blocks for programmable matter. Angewandte Chemie International Edition 50(39):9185-9190. https://doi.org/10.1002/anie.201102342
  60. Kim, J.-W., J.-H. Kim and R. Deaton. 2012. Programmable construction of nanostructures: assembly of nanostructures with various components. IEEE Nanotechnology Magazine 6(1):19-23. https://doi.org/10.1109/MNANO.2011.2181736
  61. Kimura, S. and T. Itoh. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194(3):151-163. https://doi.org/10.1007/BF01882023
  62. Klemm, D., B. Heublein, H.-P. Fink and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44(22):3358- 3393. https://doi.org/10.1002/anie.200460587
  63. Klemm, D., D. Schumann, U. Udhardt and S. Marsch. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26(9):1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1
  64. Klemm, D., F. Kramer, S. Moritz, T. Lindstrm, M. Ankerfors, D. Gray and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24):5438-5466. https://doi.org/10.1002/anie.201001273
  65. Kotagiri, N. and J.-W. Kim. 2014. Stealth nanotubes: Strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. International Journal of Nanomedicine 9(S1):85-105.
  66. Kumbar, S. G., U. S. Toti, M. Deng, R. James, C. T. Laurencin, A. Aravamudhan and M. Harmon. 2011. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomedical Materials 6(6):065005. https://doi.org/10.1088/1748-6041/6/6/065005
  67. Kye, Y.-M., C. Kim and J. Lagerwall. 2015. Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. Journal of Materials Chemistry C 3(34):8979-8985. https://doi.org/10.1039/C5TC01707F
  68. Lagerwall, J. P. F., C. Schutz, M. Salajkova, J. H. Noh, J. H. Park, G. Scalia and L. Bergstrom. 2014. Cellulose nanocrystal-based materials: From liquid crystal selfassembly and glass formation to multifunctional thin films. NPG Asia Materials 6(e80):1-12.
  69. Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: Electrochemical and thermomechanical performance Journal of Solid State Electrochemistry 17(3):575-581. https://doi.org/10.1007/s10008-012-1894-1
  70. Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290. https://doi.org/10.1016/j.tibtech.2012.02.001
  71. Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290. https://doi.org/10.1016/j.tibtech.2012.02.001
  72. Lamaming, J., R. Hashim, C. P. Leh, O. Sulaiman, T. Sugimoto and M. Nasir. 2015. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymers 134:534-540. https://doi.org/10.1016/j.carbpol.2015.08.017
  73. Lavoine, N., I. Desloges, A. Dufresne and J. Bras. 2012. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90(1):735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  74. Li, M.-C., Q. Wu, K. Song, Y. Qing and Y. Wu. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Applied Materials & Interfaces 7(8):5006-5016. https://doi.org/10.1021/acsami.5b00498
  75. Li, W., R. Guo, Y. Lan, Y. Zhang, W. Xue and Y. Zhang. 2014. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research Part A 102(4):1131-1139. https://doi.org/10.1002/jbm.a.34792
  76. Li, W., R. Wang and S. Liu. 2011. Nanocrystalline cellulose prepared from soft wood craft pulp via ultrasonicate assisted acid hydrolysis. BioResource 6(4):4271-4281.
  77. Li, W., Y. Lan, R. Guo, Y. Zhang, W. Xue and Y. Zhang. 2014. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. Journal of Biomaterials Applications 29(6):882-893. https://doi.org/10.1177/0885328214547091
  78. Li, W.-J., Y. J. Jiang and R. S. Tuan. 2008. Cell-nanofiberbased cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Engineering Part A 14(5):639-648. https://doi.org/10.1089/tea.2007.0136
  79. Lima, M. M. de S. and R. Borsali. 2004. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications 25(7):771-787. https://doi.org/10.1002/marc.200300268
  80. Lindman, B., G. Karlstrom and L. Stigsson. 2010. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 156(1):76-81. https://doi.org/10.1016/j.molliq.2010.04.016
  81. Lutolf, M. P. and J. A. Hubbell. 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 23:47-55. https://doi.org/10.1038/nbt1055
  82. Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66(3):506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  83. Mallidi, S., G. P. Luke and S. Emelianov. 2011. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology 29(5):213-221. https://doi.org/10.1016/j.tibtech.2011.01.006
  84. Marchessault, R. H., F. F. Morehead and N. M. Walter. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184:632-633. https://doi.org/10.1038/184632a0
  85. Mariano, M., N. E. Kissi and A. Dufresne. 2014. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, Part B: Polymer Physics 52(2):791-806. https://doi.org/10.1002/polb.23490
  86. Mastropietro, D. J., R. Nimroozi and H. Omidian. 2013. Rheology in pharmaceutical formulations a perspective. Journal of Developing Drugs 2(2):1-6.
  87. Mihranyan, A. 2011. Cellulose from Cladophorales green algae: From environmental problem to high-tech composite materials. Journal of Applied Polymer Science 119(4):2449-2460. https://doi.org/10.1002/app.32959
  88. Mihranyan, A., A. P. Llagostera, R. Karmhag, M. Stromme and R. Ek. 2004. Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics 269(2):433-442. https://doi.org/10.1016/j.ijpharm.2003.09.030
  89. Miller, A. F. and A. M. Donald. 2003. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4(3):510-517. https://doi.org/10.1021/bm0200837
  90. Mohammadkazemi, F., A. Mehrdad and A. Ashori. 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117:518-523. https://doi.org/10.1016/j.carbpol.2014.10.008
  91. Mondragon, G., S. Fernandes, A. Retegi, C. Pena, I. Algar, A. Eceiza and A. Arbelaiz. 2014. A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products 55: 140-148. https://doi.org/10.1016/j.indcrop.2014.02.014
  92. Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7):3941-3994. https://doi.org/10.1039/c0cs00108b
  93. Morais, J. P. S., M. de F. Rosa, M. de sá M. de S. Filho, L. D. Nascimento, D. M. do Nascimento and A. R. Cassales. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers 91(1):229-235. https://doi.org/10.1016/j.carbpol.2012.08.010
  94. Nair, S. S., J. Y. Zhu, Y. Deng and A. J. Ragauskas. 2014. High performance green barriers based on nanocellulose. Sustainable Chemical Processes 2(23):1-7. https://doi.org/10.1186/2043-7129-2-1
  95. Nascimento, D. M., J. S. Almeida, A. F. Dias, M. C. B. Figueiredo, J. P. Morais, J. P. A. Feitosa and M. de F. Rosa. 2014. A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydrate Polymers 110:456-463. https://doi.org/10.1016/j.carbpol.2014.04.053
  96. Neto, W. P. F., H. A. Silvério, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42:480-488. https://doi.org/10.1016/j.indcrop.2012.06.041
  97. Nicolai, E. and R. D. Preston. 1952. cell wall studies in the Chlorophyceae. I. a general survey of submicroscopic structure in filamentous species. Proceedings of the Royal Society B 140(899):244-274. https://doi.org/10.1098/rspb.1952.0061
  98. Ninan, N., M. Muthiah, I.-K. Park, A. Elain, S. Thomas and Y. Grohens. 2013. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 98:877-885. https://doi.org/10.1016/j.carbpol.2013.06.067
  99. Nishiyama, Y., P Langan, M. Wada and V. T. Forsyth. 2010. Looking at hydrogen bonds in cellulose. Acta Crystallographica section D 66(11):1172-1177. https://doi.org/10.1107/S0907444910032397
  100. Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano. 2009. Optically transparent nanofiber paper. Advanced Materials 21(16):1595-1598. https://doi.org/10.1002/adma.200803174
  101. Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano. 2009. Optically transparent nanofiber paper. Advanced Materials 21(16):1595-1598. https://doi.org/10.1002/adma.200803174
  102. Noishiki, Y., Y. Nishiyama, M. Wada, S. Kuga and J. Magoshi. 2002. Mechanical properties of silk fibroin-microcrystalline cellulose composite films. Journal of Applied Polymer Science 86(13):3425-3429. https://doi.org/10.1002/app.11370
  103. Normand, M. L., R. Moriana and M. Ek. 2014. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate Polymers 111(2014): 979-987. https://doi.org/10.1016/j.carbpol.2014.04.092
  104. Nypelo, T., C. Rodriguez-Abreu, J. Rivas, M. D. Dickey and O. J. Rojas. 2014. Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose 21(4):2557-2566. https://doi.org/10.1007/s10570-014-0307-2
  105. Olsson, C. and G. Westman. 2013. Direct dissolution of cellulose: background, means and applications. In cellulose-fundamental aspects; Van De Ven, T. G. M., Ed.; InTech: Rijeka, Croatia, pp. 143-178.
  106. Pandey, J. K., S. H. Ahn, C. S. Lee, K. Mohanty and M. Misra. 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295(11):975-989. https://doi.org/10.1002/mame.201000095
  107. Park, S. U., B. K. Lee, M. S. Kim, K. K. Park, W. J. Sung, H. Y. Kim, D. G. Han, J. S. Shim, Y. J. Lee, S. H. Kim, I. H. Kim and D. H. Park. 2014. The possibility of microbial cellulose for dressing and scaffold materials. International Wound Journal 11(1):35-43. https://doi.org/10.1111/j.1742-481X.2012.01035.x
  108. Payen, A. 1838. Memoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus de l'Academie des Sciences 7:1052-1056.
  109. Peng, B. L., N. Dhar, H. L. Liu and K C. Tam. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering 89(5):1191-1260. https://doi.org/10.1002/cjce.20554
  110. Perez, R. A., J.-E. Won, J. C. Knowles and H.-W. Kim. 2013. Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced Drug Delivery Reviews 65(4):471-496. https://doi.org/10.1016/j.addr.2012.03.009
  111. Persidis, A. 1999. Tissue engineering. Nature Biotechnology 17:508-510. https://doi.org/10.1038/8700
  112. Place, E. S., N. D. Evans and M. M. Stevens. 2009. Complexity in biomaterials for tissue engineering. Nature Materials 8:457-470. https://doi.org/10.1038/nmat2441
  113. Podsiadlo, P., L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann and N. A. Kotov. 2007. Layer-bylayer assembled films of cellulose nanowires with antireflective properties. Langmuir 23(15):7901-7906. https://doi.org/10.1021/la700772a
  114. Ranby, B. G. 1949. Aqueous colloidal solutions of cellulose micelles. Acta Chemica Scandinavica 3:649-650. https://doi.org/10.3891/acta.chem.scand.03-0649
  115. Ranby, B. G. 1951. Fibrous macromolecular systems cellulose and muscle the colloidal properties of cellulose micelles. Discussions of the Faraday Society 11:158-164. https://doi.org/10.1039/df9511100158
  116. Rodionova, G., M. Lenes, O. Eriksen and O. Gregersen. 2011. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127-134. https://doi.org/10.1007/s10570-010-9474-y
  117. Ross, P., R. Mayer and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55(1):35-58.
  118. Sacui, L. A., R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson and J. W. Gilman. 2014. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces 6(9):6127-6138. https://doi.org/10.1021/am500359f
  119. Samir, M., F. Alloin and A. Dufresne. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612-626. https://doi.org/10.1021/bm0493685
  120. Santos, R. M., W. P. F. Neto, H. A. Silvério, D. F. Martins, N. O. Dantas and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50:707-714. https://doi.org/10.1016/j.indcrop.2013.08.049
  121. Shafiei-Sabet, S., W. Y. Hamad and S. G. Hatzikiriakos. 2012. Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124-17133. https://doi.org/10.1021/la303380v
  122. Sheltami, R. M., I. Abdullah, I. Ahmad, A. Dufresne and H. Kargarzadeh. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2):772-779. https://doi.org/10.1016/j.carbpol.2012.01.062
  123. Shi, Q.-S., J. Feng, W.-R Li, G. Zhou, A.-M. Chen, Y.-S. Ouyang and Y.-B. Chen. 2013. Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter Intermedius Bc-41. Cellulose Chemistry and Technology 47(7-8):503-508.
  124. Shoda, M. and Y. Sugano. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1):1-8. https://doi.org/10.1007/BF02931175
  125. Shopsowitz, K. E., H. Qi, W. Y. Hamad and M. J. MacLachlan. 2010. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422-425. https://doi.org/10.1038/nature09540
  126. Sickerson, R. F. and J. A. Habrle. 1947. Cellulose intercrystalline structure. Industrial and Engineering Chemistry 39(11):1507-1512. https://doi.org/10.1021/ie50455a024
  127. Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459-494. https://doi.org/10.1007/s10570-010-9405-y
  128. Smith, H. D. 1937. Structure of cellulose. Industrial & Engineering Chemistry 29(9):1081-1084. https://doi.org/10.1021/ie50333a024
  129. Spence, K.L., R. A. Venditti, O. J. Rojas, J. J. Pawlak and M. A. Hubbe. 2011. Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6(4):4370-4388.
  130. Staudinger, H. 1920. Uber Polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6):1073-1085. https://doi.org/10.1002/cber.19200530627
  131. Sturcova, A., G. R. Davies and S. J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055-1061. https://doi.org/10.1021/bm049291k
  132. Sugiyama, J. and T. Okano. 1990. Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3198-3200. https://doi.org/10.1021/ma00214a030
  133. Tasset, S., B. Cathala, H. Bizot and I. Capron. 2013. Versatile cellular foams derived from CNC-stabilized pickering emulsions. RSC Advances 4(2):893-898. https://doi.org/10.1039/C3RA45883K
  134. Tazi, N., Z. Zhang, Y. Messaddeq, L. Almeida-Lopes, L. M. Zanardi, D. Levinson and M. Rouabhia. 2012. Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2(1):61-71. https://doi.org/10.1186/2191-0855-2-61
  135. Teixeira, E. M., A. C. Correa, A. Manzoli, F. L. Leite, C. R. Oliveira and L. H. C. Mattoso 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595-606. https://doi.org/10.1007/s10570-010-9403-0
  136. Urena-Benavides, E. E., G. Ao., V. A. Davis and C. L. Kitchens. 2011. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990-8998. https://doi.org/10.1021/ma201649f
  137. Urena-Benavides, E. E., P. J. Brown and C. L. Kitchens. 2010. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir 26(17):14263-14270. https://doi.org/10.1021/la102216v
  138. Van de Velde, K. and P. Kiekens. 2001. Thermoplastic pultrusion of natural fibre reinforced composites. Composite structures 54(2-3):355-360. https://doi.org/10.1016/S0263-8223(01)00110-6
  139. Wan, Y., C. Gao, M. Han, H. Liang, K. Ren, Y. Wang and H. Luo. 2011. Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polymers for Advanced Technologies 22(12):2643-2648. https://doi.org/10.1002/pat.1692
  140. Wu, Q., Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma and S. Fu. 2013. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Industrial Crops and Products 48(2013):28-35. https://doi.org/10.1016/j.indcrop.2013.03.032
  141. Yoshinaga, F., J. Tonouchi and K. Watanabe. 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bioscience Biotechnology and Biochemistry 61(2):119-224.
  142. Zhang, Y. P., V. P. Chodavarapu, A. G. Kirk and M. P. Andrews. 2013. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sensors and Actuators B: Chemical 176:692-697. https://doi.org/10.1016/j.snb.2012.09.100
  143. Zhao, Y. and J. Li. 2014. Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21(5):3427-3441. https://doi.org/10.1007/s10570-014-0348-6
  144. Zhao, Y., Y. Zhang, M. E. Lindstrom and J. Li. 2015. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydrate Polymers 117:286-296. https://doi.org/10.1016/j.carbpol.2014.09.020
  145. Zhao, Y., Y. Zhang, M. E. Lindstrom and J. Li. 2015. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydrate Polymers 117:286-296. https://doi.org/10.1016/j.carbpol.2014.09.020
  146. Zharov, V. P., J.-W. Kim, D. T. Curiel and M. Everts. 2005. Self-assembling nanoclusters in living systems: application of integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326-345. https://doi.org/10.1016/j.nano.2005.10.006
  147. Zheng, G., Y. Cui, E. Karabulut, L. Wagberg, H. Zhu and L. Hu. 2013. Nanostructured paper for flexible energy and electronic devices. MRS bulletin 38(4):320-325. https://doi.org/10.1557/mrs.2013.59
  148. Zhou, C. and Q. Wu. 2012. Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies. In: nanocrystals-synthesis, characterization and applications. Eds. Sudheer Neralla, pp. 103-120.
  149. Zhou, C., Q. Shi, W. Guo, L. Terrell, A. T. Qureshi, D. J. Hayes and Q. Wu. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Applied Materials & Interfaces 5(9):3847-3854. https://doi.org/10.1021/am4005072
  150. Zhou, J., N. Butchosa, H. S. N. Jayawardena, J.-H. Park, Q. Zhou, M. Yan and O. Ramstrom. 2015. Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging. Biomacromolecules 16:1426-1432. https://doi.org/10.1021/acs.biomac.5b00227
  151. Zhou, Q., H. Brumer and T. T. Teeri. 2009. Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42(15):5430-5432. https://doi.org/10.1021/ma901175j
  152. Zugenmaier, P. 2008. History of Cellulose Research. In: Crystalline Cellulose and Cellulose Derivatives, pp. 7-51. Berlin: Springer Verlag.

Cited by

  1. Advanced Cellulosic Materials for Treatment and Detection of Industrial Contaminants in Wastewater vol.1, pp.15, 2016, https://doi.org/10.1002/slct.201600653
  2. Pretreatments for Enhanced Enzymatic Hydrolysis of Pinewood: a Review vol.10, pp.4, 2017, https://doi.org/10.1007/s12155-017-9862-3
  3. Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells vol.24, pp.10, 2017, https://doi.org/10.1007/s10570-017-1432-5
  4. Neurogenic Differentiation of Human Dental Pulp Stem Cells on Graphene-Polycaprolactone Hybrid Nanofibers vol.8, pp.7, 2018, https://doi.org/10.3390/nano8070554