Browse > Article
http://dx.doi.org/10.5307/JBE.2015.40.4.373

Cellulose Nanocrystals as Advanced "Green" Materials for Biological and Biomedical Engineering  

Sinha, Arvind (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas)
Martin, Elizabeth M. (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas)
Lim, Ki-Taek (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas)
Carrier, Danielle Julie (Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville)
Han, Haewook (Department of Electrical Engineering, Pohang University of Science & Technology)
Zharov, Vladimir P. (Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences)
Kim, Jin-Woo (Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas)
Publication Information
Journal of Biosystems Engineering / v.40, no.4, 2015 , pp. 373-393 More about this Journal
Abstract
Background: Cellulose is a ubiquitous, renewable and environmentally friendly biopolymer, which has high promise to fulfil the rising demand for sustainable and biocompatible materials. Particularly, the recent progress in the synthesis of highly crystalline cellulose-based nanoscale biomaterials, namely cellulose nanocrystals (CNCs), draws significant attention from many research communities, ranging from bioresource engineering, to materials science and engineering, to biological and biomedical engineering to bionanotechnology. The feasibility of harnessing CNCs' unique biophysicochemical properties has inspired their basic and applied research, offering much promise for new biomaterials with diverse advanced functionalities. Purpose: This review focuses on vital issues and topics on the recent advances in CNC-based biomaterials with potential, in particular, for bionanotechnology and biological and biomedical engineering. The challenges and limitations of CNC technology are discussed as well as potential strategies to overcome them, providing an essential source of information in the exploration of possible and futuristic applications of the CNC-based functional "green" nanomaterials. Conclusion: CNCs offer exciting possibilities for advanced "green" nanomaterials, driving innovative research and development in a wide range of fields, including biological and biomedical engineering.
Keywords
Biological engineering; Biomedical engineering; Bionanotechnology; Cellulose nanocrystal (CNC); Cellulose; Renewable bionanomaterial;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Place, E. S., N. D. Evans and M. M. Stevens. 2009. Complexity in biomaterials for tissue engineering. Nature Materials 8:457-470.   DOI
2 Podsiadlo, P., L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann and N. A. Kotov. 2007. Layer-bylayer assembled films of cellulose nanowires with antireflective properties. Langmuir 23(15):7901-7906.   DOI
3 Ranby, B. G. 1949. Aqueous colloidal solutions of cellulose micelles. Acta Chemica Scandinavica 3:649-650.   DOI
4 Ranby, B. G. 1951. Fibrous macromolecular systems cellulose and muscle the colloidal properties of cellulose micelles. Discussions of the Faraday Society 11:158-164.   DOI
5 Rodionova, G., M. Lenes, O. Eriksen and O. Gregersen. 2011. Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127-134.   DOI
6 Ross, P., R. Mayer and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews 55(1):35-58.
7 Sacui, L. A., R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson and J. W. Gilman. 2014. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Applied Materials & Interfaces 6(9):6127-6138.   DOI
8 Samir, M., F. Alloin and A. Dufresne. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612-626.   DOI
9 Santos, R. M., W. P. F. Neto, H. A. Silvério, D. F. Martins, N. O. Dantas and D. Pasquini. 2013. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products 50:707-714.   DOI
10 Shafiei-Sabet, S., W. Y. Hamad and S. G. Hatzikiriakos. 2012. Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124-17133.   DOI
11 Sheltami, R. M., I. Abdullah, I. Ahmad, A. Dufresne and H. Kargarzadeh. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2):772-779.   DOI
12 Shi, Q.-S., J. Feng, W.-R Li, G. Zhou, A.-M. Chen, Y.-S. Ouyang and Y.-B. Chen. 2013. Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter Intermedius Bc-41. Cellulose Chemistry and Technology 47(7-8):503-508.
13 Shoda, M. and Y. Sugano. 2005. Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10(1):1-8.   DOI
14 Shopsowitz, K. E., H. Qi, W. Y. Hamad and M. J. MacLachlan. 2010. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422-425.   DOI
15 Sickerson, R. F. and J. A. Habrle. 1947. Cellulose intercrystalline structure. Industrial and Engineering Chemistry 39(11):1507-1512.   DOI
16 Siro, I. and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459-494.   DOI
17 Smith, H. D. 1937. Structure of cellulose. Industrial & Engineering Chemistry 29(9):1081-1084.   DOI
18 Sturcova, A., G. R. Davies and S. J. Eichhorn. 2005. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055-1061.   DOI
19 Spence, K.L., R. A. Venditti, O. J. Rojas, J. J. Pawlak and M. A. Hubbe. 2011. Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6(4):4370-4388.
20 Staudinger, H. 1920. Uber Polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6):1073-1085.   DOI
21 Sugiyama, J. and T. Okano. 1990. Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3198-3200.   DOI
22 Tasset, S., B. Cathala, H. Bizot and I. Capron. 2013. Versatile cellular foams derived from CNC-stabilized pickering emulsions. RSC Advances 4(2):893-898.   DOI
23 Tazi, N., Z. Zhang, Y. Messaddeq, L. Almeida-Lopes, L. M. Zanardi, D. Levinson and M. Rouabhia. 2012. Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2(1):61-71.   DOI
24 Teixeira, E. M., A. C. Correa, A. Manzoli, F. L. Leite, C. R. Oliveira and L. H. C. Mattoso 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595-606.   DOI
25 Urena-Benavides, E. E., G. Ao., V. A. Davis and C. L. Kitchens. 2011. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990-8998.   DOI
26 Urena-Benavides, E. E., P. J. Brown and C. L. Kitchens. 2010. Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir 26(17):14263-14270.   DOI
27 Aulin, C., S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Osterberg, et al. 2009. Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25(13):7675-7685.   DOI
28 Almeida, P. L., S. Kundu, J. P. Borges, M. H. Godinho and J. L. Figueirinhas. 2009. Electro-optical light scattering shutter using electrospun cellulose based nano and microfibers. Applied Physics Letters 95(4):043501-043504.   DOI
29 Araki, J., M. Wada and S. Kuga. 2001. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21-27.   DOI
30 Araki, J., M. Wada, S. Kuga and T. Okano. 2000. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413-2415.   DOI
31 Barud, H. G. Oliveira., H. da S. Barud, M. Cavicchioli, et al. 2015. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydrate Polymers 128:41-51.   DOI
32 Beck-Candanedo, S., M. Roman and D. G. Gray. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-1054.   DOI
33 Yoshinaga, F., J. Tonouchi and K. Watanabe. 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Bioscience Biotechnology and Biochemistry 61(2):119-224.
34 Van de Velde, K. and P. Kiekens. 2001. Thermoplastic pultrusion of natural fibre reinforced composites. Composite structures 54(2-3):355-360.   DOI
35 Wan, Y., C. Gao, M. Han, H. Liang, K. Ren, Y. Wang and H. Luo. 2011. Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polymers for Advanced Technologies 22(12):2643-2648.   DOI
36 Wu, Q., Y. Meng, K. Concha, S. Wang, Y. Li, L. Ma and S. Fu. 2013. Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton. Industrial Crops and Products 48(2013):28-35.   DOI
37 Zhang, Y. P., V. P. Chodavarapu, A. G. Kirk and M. P. Andrews. 2013. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sensors and Actuators B: Chemical 176:692-697.   DOI
38 Zhao, Y. and J. Li. 2014. Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21(5):3427-3441.   DOI
39 Zhao, Y., Y. Zhang, M. E. Lindstrom and J. Li. 2015. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydrate Polymers 117:286-296.   DOI
40 Zhao, Y., Y. Zhang, M. E. Lindstrom and J. Li. 2015. Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans. Carbohydrate Polymers 117:286-296.   DOI
41 Brinchi, L., F. Cotana, E. Fortunati and J. M. Kenny. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers 94(1):154-169.   DOI
42 Bhattacharya, M., M. M Malinen, P. Lauren, Y.-R. Lou, S. W. Kuisma, L. Kanninen, et al. 2012. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of Control Release 164(3):291-298.   DOI
43 Bondeson, D. and K. Oksman. 2007. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Composite Interfaces 14(7-9):617-630.   DOI
44 Boufi, S. 2014. Nanofibrillated cellulose: sustainable nanofiller with broad potentials use. In: Biomass and Bioenergy eds. K. R. Hakeem, M .Jawaid and U. Rashid, pp. 267-305. Springer International Publishing Switzerland.
45 Cao, X., B. Ding, J. Yu and S. S. Al-Deyab. 2012. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydrate Polymer 90(2):1075-1080.   DOI
46 Cao, X., H. Dong and C. M. Li. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899-904.   DOI
47 Chang, C.-W. and M.-J. Wang. 2013. Preparation of microfibrillated cellulose composites for sustained release of $H_2O_2$ or $O_2$ for biomedical applications. ACS Sustainable Chemical Engineering 1(9):1129-1134.   DOI
48 Chang, H., A.-T. Chien, H. C. Liu, P.-H. W. Wang, B. A. Newcomb and S. Kumar. 2015. Gel spinning of polyacrylonitrile/cellulose nanocrystal composite fibers. ACS Biomaterials Science & Engineering 1(7):610-616.   DOI
49 Zheng, G., Y. Cui, E. Karabulut, L. Wagberg, H. Zhu and L. Hu. 2013. Nanostructured paper for flexible energy and electronic devices. MRS bulletin 38(4):320-325.   DOI
50 Zharov, V. P., J.-W. Kim, D. T. Curiel and M. Everts. 2005. Self-assembling nanoclusters in living systems: application of integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326-345.   DOI
51 Zhou, C. and Q. Wu. 2012. Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies. In: nanocrystals-synthesis, characterization and applications. Eds. Sudheer Neralla, pp. 103-120.
52 Zhou, C., Q. Shi, W. Guo, L. Terrell, A. T. Qureshi, D. J. Hayes and Q. Wu. 2013. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Applied Materials & Interfaces 5(9):3847-3854.   DOI
53 Zhou, J., N. Butchosa, H. S. N. Jayawardena, J.-H. Park, Q. Zhou, M. Yan and O. Ramstrom. 2015. Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging. Biomacromolecules 16:1426-1432.   DOI
54 Zhou, Q., H. Brumer and T. T. Teeri. 2009. Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer. Macromolecules 42(15):5430-5432.   DOI
55 Zugenmaier, P. 2008. History of Cellulose Research. In: Crystalline Cellulose and Cellulose Derivatives, pp. 7-51. Berlin: Springer Verlag.
56 Cranston, E. D. and D. G. Gray. 2006. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522-2530.   DOI
57 Chawla, P. R., I. B. Bajaj, S. A. Survase and R. S. Singhal. 2009. Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology 47(2):107-124.
58 Chen, H. 2014. Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose: theory and practices, pp. 25-71. Springer Netherlands.
59 Chinga-Carrasco, G. 2011. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter 6(1):417.   DOI
60 Dalton, L. R., P. A. Sullivan and D. H. Bale. 2010. Electric field poled organic electro-optic materials: State of the art and future prospects. Chemical Reviews 110(1):25-55.   DOI
61 de la Zerda, A., J.-W. Kim, E. I. Galanzha, S. S. Gambhir and V. P. Zharov. 2011. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test, and photothermal theranostics. Contrast Media & Molecular Imaging 6:346-369   DOI
62 de Nooy, A. E. J., A. C. Besemer and H. van Bekkum. 1994. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recueil des Travaux Chimiques des Pays-Bas 113(3):165-166.
63 Domingues, R. M., M. E. Gomes and R. L. Reis. 2014. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327-2346.   DOI
64 Dong, S. and M. Roman. 2007. Fluorescently labeled cellulose nanocrystals for bioimaging applications. Journal of American Chemical Society 129 (45):13810-13811.   DOI
65 Dugan, J. M., R. F. Collins, J. E. Gough and S. J. Eichhorn. 2013. Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomaterialia 9(1):4707-4715.   DOI
66 Duchesne L. C. and D. W. Larson. 1989. Cellulose and the evolution of plant life. BioScience 39(4):238-241.   DOI
67 Dufresne, A. 2013. Nanocellulose: A new ageless bionanomaterial. Materials Today 16(6):220-227.   DOI
68 Dugan, J. M., J. E. Gough and S. J. Eichhorn. 2010. Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498-2504.   DOI
69 Ehrenberg, R. 2015. Global count reaches 3 trillion trees. Nature doi:10.1038/nature.2015.18287.   DOI
70 Eichhorn S. J. and G. R. Davis. 2006. Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291-307.   DOI
71 Fan, X., T. Zhang, Z. Zhao, H. Ren, Q. Zhang, Y. Yan and G. Lv. 2013. Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. Journal of Applied Polymer Science 129(2):595-603.   DOI
72 Farr, T. D., C. H. Lai, D. Grünstein, G. Orts-Gil, C. Wang, P. Boehm-Sturm, P. H. Seeberger and C. Harms. 2014. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target seletin. Nano Letters 14(4):2130-2134.   DOI
73 Frigell, J., I. Garcia, V. Gomez-Vallejo, J. Llop and S. Penades. 2014. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of American Chemical Society 136(1):449-457.   DOI
74 Hao, N., K. Neranon, O. Ramstrom and M. Yan. 2015. Glyconanomaterials for biosensing applications. Biosensorsand Bioelectronics. doi:10.1016/j.bios.2015.07.031.   DOI
75 Gui, Z., H. Zhu, E. Gillette, X. Han, G. W. Rubloff, L. Hu and S. B. Lee. 2013. Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037-6046.   DOI
76 Habibi, Y., L. A. Lucia and O. J. Rojas. 2010. Cellulose nanocrystals: chemistry, self-assembly and applications. Chemical Review 110(6):3479-3500.   DOI
77 Hanley, S. J., J. Giasson, J.-F. Revol and D. G. Gray. 1992. Atomic force microscopy of cellulose microfibrils: Comparison with transmission electron microscopy. Polymer 33(21):4639-4642.   DOI
78 Hasani, M., E. D. Cranston, G. Westmana and D. G. Gray. 2008. Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238-2244.   DOI
79 Hassan, M. L., C. M. Moorefield, H. S. Elbatal, G. R. Newkome, D. A. Modarelli and N. C. Romano. 2012. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Materials Science and Engineering: B 177(4):350-358.   DOI
80 Heux, L., G. Chauve and C. Bonini. 2008. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16 (21):8210-8212.   DOI
81 Hubbe, M. A., O. J. Rojas, L. A. Lucia and M. Sain. 2008. Cellulosic nanocomposites: A review. BioResources 3(3):929-980.
82 Jackson, J. K., K. Letchford, B. Z. Wasserman, L. Ye, W. Y. Hamad and H. M. Burt. 2011. The use of nanocrystalline cellulose for the binding and controlled release of drugs. International Journal of Nanomedicine 6:321-330.
83 John, M. J. and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71(3):343-364.   DOI
84 Jarvis, M. 2003. Cellulose stacks up. Nature 426:611-612.   DOI
85 Jiang, F. and Y.-L. Hsieh. 2015. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers 122:60-68.   DOI
86 Jiang, F., S. Han and Y.-L. Hsieh. 2013. Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances 3:12366-12375.   DOI
87 Jokerst, J. V., D. Van de Sompel, S. E. Bohndiek and S. S. Gambhir. 2014. Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2(3):119-127.   DOI
88 Kalia, S., A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna and E. Nassiopoulos. 2011. Cellulose based bio and nanocomposites: A review. International Journal of Polymer Science 2011:1-35.
89 Kaushik, M., K. Basu, C. Benoit, C. M. Cirtiu, H. Vali and A. Moores. 2015. Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. Journal of American Chemical Society 137(19):6124-6127.   DOI
90 Keshk, S. M. A. S. 2014. Bacterial cellulose production and its industrial applications. Bioprocessing & Biotechniques 4(2):1-10.
91 Khalil, H. P. S. A., A. H. Bhat and A. F. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87(2):963-979.   DOI
92 Kim, J. and S. Yun. 2006. Discovery of cellulose as a smart material. Macromolecules 39(12):4202-4206.   DOI
93 Khan, A., R. A. Khan, S. Salmieri, C . Le T ien, B. Riedl, J . Bouchard, G. Chauve, V. Tan, M. R. Kamal and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90(4):1601-1608.   DOI
94 Kim, H. N., A. Jiao, N. S. Hwang, M. S. Kim, D. H. Kang, D.-H. Kim and K.-Y Suh. 2014. Emerging nanotechnology approaches in tissue engineering and regenerative medicine. International Journal of Nanomedicine. 9(S1):1-5.   DOI
95 Kim, J., G. Montero, Y. Habibi, J. P. Hinestroza, J. Genzer, D. S. Argyropoulos and O. J. Rojas. 2009. Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering & Science 49(10):2054-2061.   DOI
96 Kim, J.-W. and R. Deaton. 2013. Molecular self-assembly of multifunctional nanoparticle composites with arbitary shapes and functions: Challenges and strategies. Particle and Particle Systems Characterization 30(2):117-132.   DOI
97 Kim, J.-W. and S. Tung. 2015. Bio-hybrid micro/nanodevices powered by flagellar motor: Challenges and strategies. Frontiers in Bioengineering and Biotechnology 3:100. DOI: 10.3389/fbioe.2015.00100.   DOI
98 Kim, J.-W., E. I. Galanzha and V. P. Zharov. 2014b. In. vivo photoacoustic detection of circulating cells and nanoparticles. In: Frontiers of Nanobiomedical Research-Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments. V. P. Torchilin (ed). World Scientific Publishing Co.
99 Kim, J.-W., E. I. Galanzha, D. A. Zaharoff, R. J. Griffin and V. P. Zharov. 2013. Nanotheranostics of circulating tumor cells, infections and other pathological features in vivo. Molecular Pharmaceutics 10(3):813-830.   DOI
100 Kim, J.-W., J.-H. Kim and R. Deaton. 2011. DNA-linked nanoparticle building blocks for programmable matter. Angewandte Chemie International Edition 50(39):9185-9190.   DOI
101 Kim, J.-W., J.-H. Kim and R. Deaton. 2012. Programmable construction of nanostructures: assembly of nanostructures with various components. IEEE Nanotechnology Magazine 6(1):19-23.   DOI
102 Kimura, S. and T. Itoh. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194(3):151-163.   DOI
103 Klemm, D., B. Heublein, H.-P. Fink and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition 44(22):3358- 3393.   DOI
104 Klemm, D., D. Schumann, U. Udhardt and S. Marsch. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science 26(9):1561-1603.   DOI
105 Klemm, D., F. Kramer, S. Moritz, T. Lindstrm, M. Ankerfors, D. Gray and A. Dorris. 2011. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition 50(24):5438-5466.   DOI
106 Kotagiri, N. and J.-W. Kim. 2014. Stealth nanotubes: Strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. International Journal of Nanomedicine 9(S1):85-105.
107 Kumbar, S. G., U. S. Toti, M. Deng, R. James, C. T. Laurencin, A. Aravamudhan and M. Harmon. 2011. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Biomedical Materials 6(6):065005.   DOI
108 Kye, Y.-M., C. Kim and J. Lagerwall. 2015. Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. Journal of Materials Chemistry C 3(34):8979-8985.   DOI
109 Lalia, B. S., Y. A. Samad and R. Hashaikeh. 2013. Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: Electrochemical and thermomechanical performance Journal of Solid State Electrochemistry 17(3):575-581.   DOI
110 Lagerwall, J. P. F., C. Schutz, M. Salajkova, J. H. Noh, J. H. Park, G. Scalia and L. Bergstrom. 2014. Cellulose nanocrystal-based materials: From liquid crystal selfassembly and glass formation to multifunctional thin films. NPG Asia Materials 6(e80):1-12.
111 Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290.   DOI
112 Lam, E., K. B. Male, J. H. Chong, A. C. Leung and J. H. Luong. 2012. Applications of functionalized and nanoparticlemodified nanocrystalline cellulose. Trends in Biotechnology 30(5):283-290.   DOI
113 Lamaming, J., R. Hashim, C. P. Leh, O. Sulaiman, T. Sugimoto and M. Nasir. 2015. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydrate Polymers 134:534-540.   DOI
114 Lavoine, N., I. Desloges, A. Dufresne and J. Bras. 2012. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90(1):735-764.   DOI
115 Li, M.-C., Q. Wu, K. Song, Y. Qing and Y. Wu. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Applied Materials & Interfaces 7(8):5006-5016.   DOI
116 Li, W., R. Guo, Y. Lan, Y. Zhang, W. Xue and Y. Zhang. 2014. Preparation and properties of cellulose nanocrystals reinforced collagen composite films. Journal of Biomedical Materials Research Part A 102(4):1131-1139.   DOI
117 Lima, M. M. de S. and R. Borsali. 2004. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications 25(7):771-787.   DOI
118 Li, W., R. Wang and S. Liu. 2011. Nanocrystalline cellulose prepared from soft wood craft pulp via ultrasonicate assisted acid hydrolysis. BioResource 6(4):4271-4281.
119 Li, W., Y. Lan, R. Guo, Y. Zhang, W. Xue and Y. Zhang. 2014. In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. Journal of Biomaterials Applications 29(6):882-893.   DOI
120 Li, W.-J., Y. J. Jiang and R. S. Tuan. 2008. Cell-nanofiberbased cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Engineering Part A 14(5):639-648.   DOI
121 Lindman, B., G. Karlstrom and L. Stigsson. 2010. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 156(1):76-81.   DOI
122 Lutolf, M. P. and J. A. Hubbell. 2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 23:47-55.   DOI
123 Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66(3):506-577.   DOI
124 Mallidi, S., G. P. Luke and S. Emelianov. 2011. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology 29(5):213-221.   DOI
125 Marchessault, R. H., F. F. Morehead and N. M. Walter. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184:632-633.   DOI
126 Mihranyan, A., A. P. Llagostera, R. Karmhag, M. Stromme and R. Ek. 2004. Moisture sorption by cellulose powders of varying crystallinity. International Journal of Pharmaceutics 269(2):433-442.   DOI
127 Mariano, M., N. E. Kissi and A. Dufresne. 2014. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, Part B: Polymer Physics 52(2):791-806.   DOI
128 Mastropietro, D. J., R. Nimroozi and H. Omidian. 2013. Rheology in pharmaceutical formulations a perspective. Journal of Developing Drugs 2(2):1-6.
129 Mihranyan, A. 2011. Cellulose from Cladophorales green algae: From environmental problem to high-tech composite materials. Journal of Applied Polymer Science 119(4):2449-2460.   DOI
130 Miller, A. F. and A. M. Donald. 2003. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4(3):510-517.   DOI
131 Mohammadkazemi, F., A. Mehrdad and A. Ashori. 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117:518-523.   DOI
132 Mondragon, G., S. Fernandes, A. Retegi, C. Pena, I. Algar, A. Eceiza and A. Arbelaiz. 2014. A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products 55: 140-148.   DOI
133 Moon, R. J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7):3941-3994.   DOI
134 Morais, J. P. S., M. de F. Rosa, M. de sá M. de S. Filho, L. D. Nascimento, D. M. do Nascimento and A. R. Cassales. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers 91(1):229-235.   DOI
135 Nicolai, E. and R. D. Preston. 1952. cell wall studies in the Chlorophyceae. I. a general survey of submicroscopic structure in filamentous species. Proceedings of the Royal Society B 140(899):244-274.   DOI
136 Nair, S. S., J. Y. Zhu, Y. Deng and A. J. Ragauskas. 2014. High performance green barriers based on nanocellulose. Sustainable Chemical Processes 2(23):1-7.   DOI
137 Nascimento, D. M., J. S. Almeida, A. F. Dias, M. C. B. Figueiredo, J. P. Morais, J. P. A. Feitosa and M. de F. Rosa. 2014. A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydrate Polymers 110:456-463.   DOI
138 Neto, W. P. F., H. A. Silvério, N. O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-soy hulls. Industrial Crops and Products 42:480-488.   DOI
139 Ninan, N., M. Muthiah, I.-K. Park, A. Elain, S. Thomas and Y. Grohens. 2013. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydrate Polymers 98:877-885.   DOI
140 Nishiyama, Y., P Langan, M. Wada and V. T. Forsyth. 2010. Looking at hydrogen bonds in cellulose. Acta Crystallographica section D 66(11):1172-1177.   DOI
141 Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano. 2009. Optically transparent nanofiber paper. Advanced Materials 21(16):1595-1598.   DOI
142 Nogi, M., S. Iwamoto, A. N. Nakagaito and H. Yano. 2009. Optically transparent nanofiber paper. Advanced Materials 21(16):1595-1598.   DOI
143 Noishiki, Y., Y. Nishiyama, M. Wada, S. Kuga and J. Magoshi. 2002. Mechanical properties of silk fibroin-microcrystalline cellulose composite films. Journal of Applied Polymer Science 86(13):3425-3429.   DOI
144 Pandey, J. K., S. H. Ahn, C. S. Lee, K. Mohanty and M. Misra. 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering 295(11):975-989.   DOI
145 Normand, M. L., R. Moriana and M. Ek. 2014. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate Polymers 111(2014): 979-987.   DOI
146 Nypelo, T., C. Rodriguez-Abreu, J. Rivas, M. D. Dickey and O. J. Rojas. 2014. Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose 21(4):2557-2566.   DOI
147 Olsson, C. and G. Westman. 2013. Direct dissolution of cellulose: background, means and applications. In cellulose-fundamental aspects; Van De Ven, T. G. M., Ed.; InTech: Rijeka, Croatia, pp. 143-178.
148 Park, S. U., B. K. Lee, M. S. Kim, K. K. Park, W. J. Sung, H. Y. Kim, D. G. Han, J. S. Shim, Y. J. Lee, S. H. Kim, I. H. Kim and D. H. Park. 2014. The possibility of microbial cellulose for dressing and scaffold materials. International Wound Journal 11(1):35-43.   DOI
149 Payen, A. 1838. Memoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus de l'Academie des Sciences 7:1052-1056.
150 Peng, B. L., N. Dhar, H. L. Liu and K C. Tam. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering 89(5):1191-1260.   DOI
151 Perez, R. A., J.-E. Won, J. C. Knowles and H.-W. Kim. 2013. Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced Drug Delivery Reviews 65(4):471-496.   DOI
152 Persidis, A. 1999. Tissue engineering. Nature Biotechnology 17:508-510.   DOI