Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.123

Acebutolol, a Cardioselective Beta Blocker, Promotes Glucose Uptake in Diabetic Model Cells by Inhibiting JNK-JIP1 Interaction  

Li, Yi (Department of Bio and Brain Engineering, KAIST)
Jung, Nan-Young (Department of Bio and Brain Engineering, KAIST)
Yoo, Jae Cheal (Department of Bio and Brain Engineering, KAIST)
Kim, Yul (Department of Bio and Brain Engineering, KAIST)
Yi, Gwan-Su (Department of Bio and Brain Engineering, KAIST)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 458-463 More about this Journal
Abstract
The phosphorylation of JNK is known to induce insulin resistance in insulin target tissues. The inhibition of JNK-JIP1 interaction, which interferes JNK phosphorylation, becomes a potential target for drug development of type 2 diabetes. To discover the inhibitors of JNK-JIP1 interaction, we screened out 30 candidates from 4320 compound library with In Cell Interaction Trap method. The candidates were further confirmed and narrowed down to five compounds using the FRET method in a model cell. Among those five compounds, Acebutolol showed notable inhibition of JNK phosphorylation and elevation of glucose uptake in diabetic models of adipocyte and liver cell. Structural computation showed that the binding affinity of Acebutolol on the JNK-JIP1 interaction site was comparable to the known inhibitor, BI-78D3. Our results suggest that Acebutolol, an FDA-approved beta blocker for hypertension therapy, could have a new repurposed effect on type 2 diabetes elevating glucose uptake process by inhibiting JNK-JIP1 interaction.
Keywords
Acebutolol; JNK inhibitor; Glucose uptake; Drug screening; Diabetes Mellitus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stebbins, J. L., De, S. K., Machleidt, T., Becattini, B., Vazquez, J., Kuntzen, C., Chen, L. H., Cellitti, J. F., Riel-Mehan, M., Emdadi, A., Solinas, G., Karin, M. and Pellecchia, M. (2008) Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc. Natl. Acad. Sci. U.S.A. 105, 16809-16813.   DOI
2 Aguirre, V., Uchida, T., Yenush, L., Davis, R. and White, M. F. (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of $Ser^{307}$. J. Biol. Chem. 275, 9047-9054.   DOI
3 Barr, R. K., Kendrick, T. S. and Bogoyevitch, M. A. (2002) Identification of the critical features of a small peptide inhibitor of JNK activity. J. Biol. Chem. 277, 10987-10997.   DOI
4 Bates, D. J., Lewis, L. D., Eastman, A. and Danilov, A. V. (2015) Vincristine activates c-Jun N-terminal kinase in chronic lymphocytic leukaemia in vivo. Br. J. Clin. Pharmacol. 80, 493-501.   DOI
5 Bennett, B. L., Satoh, Y. and Lewis, A. J. (2003) JNK: a new therapeutic target for diabetes. Curr. Opin. Pharmacol. 3, 420-425.   DOI
6 Charoenlarp, K. and Jaroonvesama, N. (1978) Clinical trial of acebutolol (Sectral) in hypertension. J. Int. Med. Res. 6, 67-71.   DOI
7 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235-242.   DOI
8 Bogoyevitch, M. A. and Arthur, P. G. (2008) Inhibitors of c-Jun N-terminal kinases: JuNK no more? Biochim. Biophysica. Acta 1784, 76-93.   DOI
9 Carlson, C. J., Koterski, S., Sciotti, R. J., Poccard, G. B. and Rondinone, C. M. (2003) Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes 52, 634-641.   DOI
10 Deacon, S. P., Karunanayake, A. and Barnett, D. (1977) Acebutolol, atenolol, and propranolol and metabolic responses to acute hypoglycaemia in diabetics. Br. Med. J. 2, 1255-1257.   DOI
11 Fraser, D. M., Nimmo, G. R. and Poloniecki, J. D. (1986) Acebutolol in the treatment of diabetic patients with hypertension. Curr. Med. Res. Opin. 10, 122-127.   DOI
12 Kim, D. J., Yi, Y. W. and Kim, J. H. (2008) In situ monitoring of bindings between dasatinib and its target protein kinases using magnetic nanoparticles in live cells. J. Am. Chem. Soc. 130, 16466-16467.   DOI
13 Heo, Y. S., Kim, S. K., Seo, C. I., Kim, Y. K., Sung, B. J., Lee, H. S., Lee, J. I., Park, S. Y., Kim, J. H., Hwang, K. Y., Hyun, Y. L., Jeon, Y. H., Ro, S., Cho, J. M., Lee, T. G. and Yang, C. H. (2004) Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J. 23, 2185-2195.   DOI
14 Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M. and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance. Nature 420, 333-336.   DOI
15 Kaneto, H., Xu, G., Fujii, N., Kim, S., Bonner-Weir, S. and Weir, G. C. (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J. Biol. Chem. 277, 30010-30018.   DOI
16 Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J. and Bryant, S. H. (2016) PubChem Substance and Compound databases. Nucleic Acids Res. 44, D1202-D1213.   DOI
17 Kumar, A., Singh, U. K., Kini, S. G., Garg, V., Agrawal, S., Tomar, P. K., Pathak, P., Chaudhary, A., Gupta, P. and Malik, A. (2015) JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases. Future Med. Chem. 7, 2065-2086.   DOI
18 Rao, S. N., Head, M. S., Kulkarni, A. and LaLonde, J. M. (2007) Validation studies of the site-directed docking program LibDock. J. Chem. Inf. Model. 47, 2159-2171.   DOI