Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04015

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces  

Lee, Namil (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Hwang, Soonkyu (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Lee, Yongjae (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Cho, Suhyung (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Palsson, Bernhard (Department of Bioengineering, University of California San Diego)
Cho, Byung-Kwan (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.5, 2019 , pp. 667-686 More about this Journal
Abstract
Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.
Keywords
Streptomyces; secondary metabolites; biosynthetic gene cluster; antibiotics; synthetic biology; genome editing; CRISPR/Cas9; heterologous expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K. 2016. Finding targets for genome reduction in Streptomyces lividans TK24 using flux balance analysis. IFAC-PapersOnLine 49: 252-257.
2 Toro L, Pinilla L, Avignone-Rossa C, Rios-Estepa R. 2018. An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioprocess Biosyst. Eng. 41: 657-669.   DOI
3 Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb. Cell Fact. 17: 25.   DOI
4 Machado H, Tuttle RN, Jensen PR. 2017. Omics-based natural product discovery and the lexicon of genome mining. Curr. Opin. Microbiol. 39: 136-142.   DOI
5 Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191.   DOI
6 Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, et al. 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566: 218-223.   DOI
7 Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPRCas system. Nucleic Acids Res. 41: 7429-7437.   DOI
8 Siu KH, Chen W. 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. Nat. Chem. Biol. 15: 217-220.   DOI
9 Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, et al. 2011. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J. Bacteriol. 193: 1142-1153.   DOI
10 Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25: 117-124.   DOI
11 Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, et al. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7: 11605.   DOI
12 Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538.   DOI
13 Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26: 2633-2634.   DOI
14 Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, et al. 2015. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. USA 112:12181-12186.   DOI
15 Yi JS, Kim MW, Kim M, Jeong Y, Kim EJ, Cho BK, et al. 2017. A novel approach for gene expression optimization through native promoter and 5' UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor. ACS Synth. Biol. 6: 555-565.   DOI
16 Janssen GR, Bibb MJ. 1990. Tandem promoters, tsrp1 and tsrp2, direct transcription of the thiostrepton resistance gene (tsr) of Streptomyces azureus: transcriptional initiation from tsrp2 occurs after deletion of the -35 region. Mol. Gen. Genet. 221: 339-346.   DOI
17 Bu QT, Yu P, Wang J, Li ZY, Chen XA, Mao XM, et al. 2019. Rational construction of genome-reduced and highefficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb. Cell Fact. 18: 16.   DOI
18 Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, et al. 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. USA 111: 1957-1962.   DOI
19 Orr-Weaver TL, Szostak JW, Rothstein RJ. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci USA 78: 6354-6358.   DOI
20 Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43: e55.   DOI
21 Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. 2018. Generation of a clusterfree Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 49: 316-324.   DOI
22 Xu M, Wang Y, Zhao Z, Gao G, Huang SX, Kang Q, et al. 2016. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp. Appl. Environ. Microbiol. 82: 5795-5805.   DOI
23 Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y, et al. 2016. Development of Streptomyces sp. FR-008 as an emerging chassis. Synth. Syst. Biotechnol. 1: 207-214.   DOI
24 Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, et al. 2013. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2: 384-396.   DOI
25 Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. 2017. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in Streptomyces Species. Front. Microbiol. 8: 394.
26 Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, et al. 2008. Genome sequence of the streptomycinproducing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060.   DOI
27 Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. 2014. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 9: e99701.   DOI
28 Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. 2011. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl. Microbiol. Biotechnol. 90: 615-623.   DOI
29 Sohaskey CD, Im H, Nelson AD, Schauer AT. 1992. Tn4556 and luciferase: synergistic tools for visualizing transcription in Streptomyces. Gene 115: 67-71.   DOI
30 Ingram C, Brawner M, Youngman P, Westpheling J. 1989. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter. J. Bacteriol. 171: 6617-6624.   DOI
31 Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13: 509-523.   DOI
32 Katz M, Hover BM, Brady SF. 2016. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol Biotechnol. 43: 129-141.   DOI
33 Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng. Bugs. 2: 230-233.   DOI
34 Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, et al. 2011. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ. Microbiol. 13: 391-403.   DOI
35 Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. (Tokyo) 70: 865-870.   DOI
36 Lim FY, Sanchez JF, Wang CC, Keller NP. 2012. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 517: 303-324.   DOI
37 Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett. 586:2177-2183.   DOI
38 Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG, et al. 2010. Rapid functional screening of Streptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC. Appl. Environ. Microbiol. 76:3645-3656.   DOI
39 Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H, et al. 2018. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci. Rep. 8: 1594.   DOI
40 Weber T, Kim HU. 2016. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1: 69-79.   DOI
41 Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. 2017. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci. Rep. 7: 44786.   DOI
42 Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. 2017. Genome-wide analysis reveals the secondary metabolome in Streptomyces kanasensis ZX01. Genes (Basel) 8: 346.   DOI
43 Takano E, White J, Thompson CJ, Bibb MJ. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133-137.   DOI
44 Luo Y, Zhang L, Barton KW, Zhao H. 2015. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth. Biol. 4: 1001-1010.   DOI
45 Li S, Wang J, Li X, Yin S, Wang W, Yang K. 2015. Genomewide identification and evaluation of constitutive promoters in Streptomycetes. Microb. Cell Fact. 14: 172.   DOI
46 Murakami T, Holt TG, Thompson CJ. 1989. Thiostreptoninduced gene expression in Streptomyces lividans. J. Bacteriol. 171: 1459-1466.   DOI
47 Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin (Shanghai) 47: 231-243.   DOI
48 Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC. 2005. Natural and synthetic tetracyclineinducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 33: e87.   DOI
49 Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl. Microbiol. Biotechnol. 98: 8641-8655.   DOI
50 Rouet P, Smih F, Jasin M. 1994. Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14: 8096-8106.   DOI
51 Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 107: 2646-2651.   DOI
52 Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. 2013. Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell 152: 1173-1183.   DOI
53 Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z, et al. 2018. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol. J. 13: e1800121.   DOI
54 Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z, et al. 2017. Large-scale transposition mutagenesis of Streptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis. Appl. Environ. Microbiol. 83: e02889-02816.
55 Gomez-Escribano JP, Bibb MJ. 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 4: 207-215.   DOI
56 Greunke C, Duell ER, D'Agostino PM, Glockle A, Lamm K, Gulder TAM. 2018. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential. Metab. Eng. 47: 334-345.   DOI
57 Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 16: 96.   DOI
58 Nah HJ, Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 14: 140.   DOI
59 Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated sitespecific recombination in Streptomyces. Sci Rep. 5: 8740.   DOI
60 Shao Z, Luo Y, Zhao H. 2011. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol. Biosyst. 7: 1056-1059.   DOI
61 Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, et al. 2012. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30: 440-446.   DOI
62 Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem. 3: 619-627.   DOI
63 Ansari MZ, Yadav G, Gokhale RS, Mohanty D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32: W405-413.   DOI
64 Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E, et al. 2017. Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis. Microb. Cell Fact. 16: 9.   DOI
65 Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531.   DOI
66 Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs. 12:1043-1065.   DOI
67 Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4: 1020-1029.   DOI
68 Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.   DOI
69 Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573.   DOI
70 Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733-740.   DOI
71 Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, et al. 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13:607-609.   DOI
72 Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y, et al. 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl. Microbiol. Biotechnol. 99: 10575-10585.   DOI
73 Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. 2017. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab. Eng. 40: 80-92.   DOI
74 Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W, et al. 2017. Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches. Synth. Syst. Biotechnol. 2: 130-136.   DOI
75 Liu R, Deng Z, Liu T. 2018. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab. Eng. 50: 74-84.   DOI
76 Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.   DOI
77 Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, et al. 2018. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl. Environ. Microbiol. 84: e00827-00818.
78 Xu M, Wright GD. 2018. Heterologous expression-facilitated natural products' discovery in actinomycetes. J. Ind. Microbiol. Biotechnol. 46: 415-431.
79 Myronovskyi M, Rosenkranzer B, Luzhetskyy A. 2014. Iterative marker excision system. Appl. Microbiol. Biotechnol. 98: 4557-4570.   DOI
80 Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A, et al. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151: 1507-1523.   DOI
81 Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ, et al. 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Appl. Microbiol. Biotechnol. 76: 1357-1364.   DOI
82 Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. 2013. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 8: e69319.   DOI
83 Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L. 2000. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891. Antimicrob. Agents Chemother. 44: 1214-1222.   DOI
84 Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y, et al. 2016. Hybrubins: Bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes. Org. Lett. 18: 572-575.   DOI
85 Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, et al. 2017. Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth. Biol. 6: 159-166.   DOI
86 Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl. Environ Microbiol. 77: 5370-5383.   DOI
87 Flores FJ, Rincon J, Martin JF. 2003. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb. Cell Fact. 2: 5.   DOI
88 Willemse J, van Wezel GP. 2009. Imaging of Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization. PLoS One 4: e4242.   DOI
89 Santos-Beneit F, Errington J. 2017. Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. Arch. Microbiol. 199: 875-880.   DOI
90 Nguyen KD, Au-Young SH, Nodwell JR. 2007. Monomeric red fluorescent protein as a reporter for macromolecular localization in Streptomyces coelicolor. Plasmid 58: 167-173.   DOI
91 Siegl T, Luzhetskyy A. 2012. Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek. 102: 503-516.   DOI
92 Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, et al. 2012. Site-specific recombination strategies for engineering actinomycete genomes. Appl. Environ. Microbiol. 78: 1804-1812.   DOI
93 Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF, et al. 2006. Expression of Cre recombinase during transient phage infection permits efficient marker removal in Streptomyces. Nucleic Acids Res. 34: e20.   DOI
94 Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci. Rep. 8: 6888.   DOI
95 Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes - a review. Nat. Prod. Rep. 33:988-1005.   DOI
96 Harrison J, Studholme DJ. 2014. Recently published Streptomyces genome sequences. Microb. Biotechnol. 7: 373-380.   DOI
97 Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.   DOI
98 Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. 2008. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 36: 6882-6892.   DOI
99 Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. 2009. Automated genome mining for natural products. BMC Bioinformatics 10: 185.   DOI
100 Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, et al. 2015. Genomes to natural products prediction informatics for secondary metabolomes (PRISM). Nucleic Acids Res. 43: 9645-9662.   DOI
101 Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. 2009. Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 94: 110-116.   DOI
102 Baral B, Akhgari A, Metsa-Ketela M. 2018. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 3: 163-178.   DOI
103 King AA, Chater KF. 1986. The expression of the Escherichia coli lacZ gene in Streptomyces. J. Gen. Microbiol. 132: 1739-1752.
104 Lussier FX, Denis F, Shareck F. 2010. Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl. Environ. Microbiol. 76: 967-970.   DOI
105 Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterisation of a series of multicopy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol. Gen. Genet. 203: 468-478.   DOI
106 Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, et al. 2004. Hyper-inducible expression system for Streptomycetes. Proc. Natl. Acad. Sci. USA 101: 14031-14035.   DOI
107 Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H, et al. 2018. Development of a strictly regulated xylose-induced expression system in Streptomyces. Microb. Cell Fact. 17: 151.   DOI
108 Hindle Z, Smith CP. 1994. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol. Microbiol. 12: 737-745.   DOI
109 Pulido D, Jimenez A, Salas M, Mellado RP. 1987. A Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized in Streptomyces lividans. Gene 56: 277-282.   DOI
110 Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4: 723-728.   DOI
111 West S, Proudfoot NJ. 2009. Transcriptional termination enhances protein expression in human cells. Mol. Cell. 33:354-364.   DOI
112 Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. 2010. Crosstalk between mRNA 3' end processing and transcription initiation. Mol. Cell. 40: 410-422.   DOI
113 Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, et al. 2016. Term-seq reveals abundant riboregulation of antibiotics resistance in bacteria. Science 352:aad9822.   DOI
114 Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for Streptomycetes. Appl. Environ. Microbiol. 79: 4484-4492.   DOI
115 Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, et al. 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45: W36-W41.   DOI
116 Myronovskyi M, Luzhetskyy A. 2016. Native and engineered promoters in natural product discovery. Nat. Prod. Rep. 33:1006-1019.   DOI
117 Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14: 533-545.   DOI
118 Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215-226.   DOI
119 Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
120 Labes G, Bibb M, Wohlleben W. 1997. Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter. Microbiology 143: 1503-1512.   DOI
121 Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. 2013. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol. 2: 662-669.   DOI
122 Tao W, Yang A, Deng Z, Sun Y. 2018. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front Microbiol. 9: 1660.   DOI
123 Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, et al. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem. Sci. 8: 3218-3227.   DOI
124 Wang Y, Cobb RE, Zhao H. 2016. High-efficiency genome editing of Streptomyces species by an engineered CRISPR/Cas System. Methods Enzymol. 575: 271-284.   DOI
125 Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. 2017. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163: 1148-1155.   DOI
126 Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, et al. 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. MBio 6: e01714-01715.
127 Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6: 8101.   DOI
128 Kang HS, Charlop-Powers Z, Brady SF. 2016. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth. Biol. 5: 1002-1010.   DOI
129 Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y, et al. 2016. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis. Chem. Sci. 7: 376-385.   DOI
130 Li L, Wei K, Liu X, Wu Y, Zhensg G, Chen S, et al. 2019. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab. Eng. 52: 153-167.   DOI
131 Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. 2013. Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31:688-691.   DOI
132 Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.   DOI
133 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.   DOI
134 DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41: 4336-4343.   DOI
135 Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat. Methods 10: 741-743.   DOI
136 Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-239.   DOI
137 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.   DOI
138 Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.   DOI
139 Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757-761.   DOI
140 Zelyas N, Tahlan K, Jensen SE. 2009. Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp. Gene 443: 48-54.   DOI