DOI QR코드

DOI QR Code

Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier

  • Kim, Minsu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Mok, Hyejung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Yeo, Woon-Seok (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Choi, Yoon Kyung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2020.07.08
  • Accepted : 2021.02.17
  • Published : 2021.09.30

Abstract

Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has antiinflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.

Keywords

Acknowledgement

This paper was supported by the Konkuk University Premier Research Fund received in 2019.

References

  1. Angelova N, Kong HW, van der Heijden R, Yang SY, Choi YH, Kim HK, et al. Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 2008;19(1):2-16. https://doi.org/10.1002/pca.1049
  2. Leung KW, Wong AS. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. https://doi.org/10.1186/1749-8546-5-20
  3. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37(1):8-29. https://doi.org/10.5142/jgr.2013.37.8
  4. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7(3):293-302. https://doi.org/10.2174/157016109788340767
  5. Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42(3):239-47. https://doi.org/10.1016/j.jgr.2017.03.011
  6. Im DS. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules 2020;10(3).
  7. Yu SE, Mwesige B, Yi YS, Yoo BC. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 2019;43(3):361-7. https://doi.org/10.1016/j.jgr.2018.09.001
  8. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42(2):123-32. https://doi.org/10.1016/j.jgr.2017.01.008
  9. He Y, Yang J, Lv Y, Chen J, Yin F, Huang J, et al. A review of ginseng clinical trials registered in the WHO international clinical trials Registry platform. Biomed Res Int 2018;2018:1843142.
  10. Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 2009;1256:111-22. https://doi.org/10.1016/j.brainres.2008.12.031
  11. Lo EH, Rosenberg GA. The neurovascular unit in health and disease: introduction. Stroke; a Journal of Cerebral Circulation 2009;40(3 Suppl):S2-3.
  12. Jung E, Koh SH, Yoo M, Choi YK. Regenerative potential of carbon monoxide in adult neural circuits of the central nervous system. Int J Mol Sci 2020;21(7).
  13. Lee H, Choi YK. Regenerative effects of heme oxygenase metabolites on neuroinflammatory diseases. Int J Mol Sci 2018;20(1).
  14. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol 2010;28:321-42. https://doi.org/10.1146/annurev-immunol-030409-101311
  15. Choi YK, Maki T, Mandeville ET, Koh SH, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 2016;22(11):1335-41. https://doi.org/10.1038/nm.4188
  16. Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Mol Neurodegener 2016;11:23. https://doi.org/10.1186/s13024-016-0088-1
  17. Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nature Reviews Neuroscience 2018;19(6):323-37. https://doi.org/10.1038/s41583-018-0001-8
  18. Tedeschi A, Bradke F. Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr Opin Neurobiol 2017;42:118-27. https://doi.org/10.1016/j.conb.2016.12.005
  19. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience 2006;7(1):41-53. https://doi.org/10.1038/nrn1824
  20. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008;32(2):200-19. https://doi.org/10.1016/j.nbd.2008.08.005
  21. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68(3):409-27. https://doi.org/10.1016/j.neuron.2010.09.043
  22. Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep 2008;41(5):345-52. https://doi.org/10.5483/BMBRep.2008.41.5.345
  23. Choi YK. Role of carbon monoxide in neurovascular repair processing. Biomol Ther (Seoul) 2018;26(2):93-100. https://doi.org/10.4062/biomolther.2017.144
  24. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annual Review of Physiology 1998;60:121-42. https://doi.org/10.1146/annurev.physiol.60.1.121
  25. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 2002;39(4-5):225-37. https://doi.org/10.1016/S1537-1891(03)00011-9
  26. Min JK, Cho YL, Choi JH, Kim Y, Kim JH, Yu YS, et al. Receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) increases vascular permeability: impaired permeability and angiogenesis in eNOS-deficient mice. Blood 2007;109(4):1495-502. https://doi.org/10.1182/blood-2006-06-029298
  27. Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant 2007;16(3):285-99. https://doi.org/10.3727/000000007783464731
  28. Chen L, Na R, Boldt E, Ran Q. NLRP3 inflammasome activation by mitochondrial reactive oxygen species plays a key role in long-term cognitive impairment induced by paraquat exposure. Neurobiol Aging 2015;36(9):2533-43. https://doi.org/10.1016/j.neurobiolaging.2015.05.018
  29. Xu M, Ma Q, Fan C, Chen X, Zhang H, Tang M. Ginsenosides Rb1 and Rg1 protect primary cultured astrocytes against oxygen-glucose deprivation/reoxygenation-induced injury via improving mitochondrial function. Int J Mol Sci 2019;20(23).
  30. Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nature Reviews Neuroscience 2018;19(10):610-21. https://doi.org/10.1038/s41583-018-0055-7
  31. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10(2):417-26. https://doi.org/10.1016/S1097-2765(02)00599-3
  32. Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 2019;18(2):211-20. https://doi.org/10.1016/s1474-4422(18)30394-6
  33. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 2007;14(9):1590-604. https://doi.org/10.1038/sj.cdd.4402194
  34. Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH, et al. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol 2012;5(3):288-98. https://doi.org/10.1038/mi.2012.8
  35. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 2001;276(30):28309-13. https://doi.org/10.1074/jbc.C100250200
  36. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 2017;214(5):1351-70. https://doi.org/10.1084/jem.20150237
  37. Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol 2018;9:697. https://doi.org/10.3389/fimmu.2018.00697
  38. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32(5):593-604. https://doi.org/10.1016/j.immuni.2010.05.007
  39. Combs CK, Karlo JC, Kao SC, Landreth GE. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001;21(4):1179-88. https://doi.org/10.1523/JNEUROSCI.21-04-01179.2001
  40. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481-7. https://doi.org/10.1038/nature21029
  41. Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. FASEB J 2020;34(1):208-21. https://doi.org/10.1096/fj.201901537r
  42. Gao Y, Li J, Wang J, Li X, Li J, Chu S, et al. Ginsenoside Rg1 prevent and treat inflammatory diseases: a review. Int Immunopharmacol 2020;87:106805. https://doi.org/10.1016/j.intimp.2020.106805
  43. Kim S, Lee M, Choi YK. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol Ther (Seoul) 2020;28(1):45-57. https://doi.org/10.4062/biomolther.2019.119
  44. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J Cell Commun Signal 2016;10(4):347-54. https://doi.org/10.1007/s12079-016-0352-8
  45. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocytederived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 2012;122(7):2454-68. https://doi.org/10.1172/JCI60842
  46. Chen J, Zhang X, Liu X, Zhang C, Shang W, Xue J, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol 2019;856:172418. https://doi.org/10.1016/j.ejphar.2019.172418
  47. Zhang XP, Li KR, Yu Q, Yao MD, Ge HM, Li XM, et al. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization. FASEB J 2018;32(7):3782-91. https://doi.org/10.1096/fj.201701074rr
  48. Ryu S, Jeon H, Kim HY, Koo S, Kim S. Korean red ginseng promotes hippocampal neurogenesis in mice. Neural Regen Res 2020;15(5):887-93. https://doi.org/10.4103/1673-5374.268905
  49. Si YC, Zhang JP, Xie CE, Zhang LJ, Jiang XN. Effects of Panax notoginseng saponins on proliferation and differentiation of rat hippocampal neural stem cells. Am J Chin Med 2011;39(5):999-1013. https://doi.org/10.1142/S0192415X11009366
  50. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4(11):1313-7. https://doi.org/10.1038/3305
  51. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 2018;361(6406).
  52. Wang L, Kisaalita WS. Administration of BDNF/ginsenosides combination enhanced synaptic development in human neural stem cells. Journal of Neuroscience Methods 2011;194(2):274-82. https://doi.org/10.1016/j.jneumeth.2010.10.025
  53. Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, et al. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012;166(6):1872-87. https://doi.org/10.1111/j.1476-5381.2012.01902.x
  54. Jakaria M, Kim J, Karthivashan G, Park SY, Ganesan P, Choi DK. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases. J Ginseng Res 2019;43(2):163-71. https://doi.org/10.1016/j.jgr.2018.01.001
  55. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, et al. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014;19(2):317-26. https://doi.org/10.1016/j.intimp.2014.01.018
  56. Ji YC, Kim YB, Park SW, Hwang SN, Min BK, Hong HJ, et al. Neuroprotective effect of ginseng total saponins in experimental traumatic brain injury. J Korean Med Sci 2005;20(2):291-6. https://doi.org/10.3346/jkms.2005.20.2.291
  57. Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, et al. Ginsenoside-Rb1-Mediated anti-angiogenesis via regulating PEDF and miR-33a through the activation of PPAR-gamma pathway. Front Pharmacol 2017;8:783. https://doi.org/10.3389/fphar.2017.00783
  58. Cho YL, Hur SM, Kim JY, Kim JH, Lee DK, Choe J, et al. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation. J Biol Chem 2015;290(1):467-77. https://doi.org/10.1074/jbc.M114.603142
  59. Leung KW, Pon YL, Wong RN, Wong AS. Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptorrelated phosphatidylinositol 3-kinase/Akt and beta-catenin/T-cell factordependent pathway in human endothelial cells. J Biol Chem 2006;281(47):36280-8. https://doi.org/10.1074/jbc.M606698200
  60. Kwok HH, Guo GL, Lau JK, Cheng YK, Wang JR, Jiang ZH, et al. Stereoisomers ginsenosides-20(S)-Rg(3) and -20(R)-Rg(3) differentially induce angiogenesis through peroxisome proliferator-activated receptor-gamma. Biochemical Pharmacology 2012;83(7):893-902. https://doi.org/10.1016/j.bcp.2011.12.039
  61. Min JK, Kim JH, Cho YL, Maeng YS, Lee SJ, Pyun BJ, et al. 20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem Biophys Res Commun 2006;349(3):987-94. https://doi.org/10.1016/j.bbrc.2006.08.129
  62. Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res 2019;144:292-305. https://doi.org/10.1016/j.phrs.2019.04.021
  63. Qin M, Luo Y, Lu S, Sun J, Yang K, Sun G, et al. Ginsenoside F1 ameliorates endothelial cell inflammatory injury and prevents atherosclerosis in mice through A20-mediated suppression of NF-kB signaling. Front Pharmacol 2017;8:953. https://doi.org/10.3389/fphar.2017.00953
  64. Kang JI, Choi Y, Cui CH, Lee D, Kim SC, Kim HM. Pro-angiogenic ginsenosides F1 and Rh1 inhibit vascular leakage by modulating NR4A1. Sci Rep 2019;9(1):4502. https://doi.org/10.1038/s41598-019-41115-2
  65. Choi YK, Kim JH, Kim WJ, Lee HY, Park JA, Lee SW, et al. AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxiainducible factor-1alpha. J Neurosci 2007;27(16):4472-81. https://doi.org/10.1523/JNEUROSCI.5368-06.2007
  66. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 2010;107(8):3811-6. https://doi.org/10.1073/pnas.0914722107
  67. Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel) 2019;8(5).
  68. Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA, Furfaro AL. Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? Int J Mol Sci 2018;19(8).
  69. Jung JS, Lee SY, Kim DH, Kim HS. Protopanaxatriol ginsenoside Rh1 upregulates phase II antioxidant enzyme gene expression in rat primary astrocytes: involvement of MAP kinases and Nrf2/ARE signaling. Biomol Ther (Seoul) 2016;24(1):33-9. https://doi.org/10.4062/biomolther.2015.129
  70. Naval MV, Gomez-Serranillos MP, Carretero ME, Villar AM. Neuroprotective effect of a ginseng (Panax ginseng) root extract on astrocytes primary culture. J Ethnopharmacol 2007;112(2):262-70. https://doi.org/10.1016/j.jep.2007.03.010
  71. Shieh PC, Tsao CW, Li JS, Wu HT, Wen YJ, Kou DH, et al. Role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the action of ginsenoside Rh2 against beta-amyloid-induced inhibition of rat brain astrocytes. Neurosci Lett 2008;434(1):1-5. https://doi.org/10.1016/j.neulet.2007.12.032
  72. Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature 2010;468(7321):223-31. https://doi.org/10.1038/nature09612
  73. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci 2018;25(1):21. https://doi.org/10.1186/s12929-018-0423-7
  74. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 2013;4:2932. https://doi.org/10.1038/ncomms3932
  75. Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurological Research 2004;26(4):422-8. https://doi.org/10.1179/016164104225016047
  76. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26(2):143-9. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  77. Ye J, Yao JP, Wang X, Zheng M, Li P, He C, et al. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016;13(4):3083-91. https://doi.org/10.3892/mmr.2016.4914
  78. Ni N, Liu Q, Ren H, Wu D, Luo C, Li P, et al. Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 2014;19(3):3012-24. https://doi.org/10.3390/molecules19033012
  79. Tu LH, Ma J, Liu HP, Wang RR, Luo J. The neuroprotective effects of ginsenosides on calcineurin activity and tau phosphorylation in SY5Y cells. Cell Mol Neurobiol 2009;29(8):1257-64. https://doi.org/10.1007/s10571-009-9421-3
  80. Xie YH, Chen XC, Zhang J, Huang TW, Song JQ, Fang YX, et al. [Ginsenoside Rb1 attenuates beta-amyloid peptide(25-35) -induced hyper-phosphorylation of tau protein through CDK5 signal pathway]. Yao Xue Xue Bao 2007;42(8):828-32.
  81. Yang L, Hao J, Zhang J, Xia W, Dong X, Hu X, et al. Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin. J Pharm Pharmacol 2009;61(3):375-80. https://doi.org/10.1211/jpp/61.03.0013
  82. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001;292(5521):1550-2. https://doi.org/10.1126/science.1059946
  83. Liu D, Zhang H, Gu W, Liu Y, Zhang M. Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3beta-mediated CHOP induction. Mol Med Rep 2014;9(4):1434-8. https://doi.org/10.3892/mmr.2014.1958
  84. Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K. Abeta(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuro-psychopharmacology 2004;29(5):860-8. https://doi.org/10.1038/sj.npp.1300388
  85. Ge KL, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced toxicity in MES23.5 cells via Akt and ERK signaling pathways. J Ethnopharmacol 2010;127(1):118-23. https://doi.org/10.1016/j.jep.2009.09.038
  86. Gao QG, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. Journal of Neurochemistry 2009;109(5):1338-47. https://doi.org/10.1111/j.1471-4159.2009.06051.x
  87. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, et al. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158(1-2):143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  88. Paik S, Choe JH, Choi GE, Kim JE, Kim JM, Song GY, et al. Rg6, a rare ginsenoside, inhibits systemic inflammation through the induction of interleukin10 and microRNA-146a. Sci Rep 2019;9(1):4342. https://doi.org/10.1038/s41598-019-40690-8
  89. Joo SS, Lee DI. Potential effects of microglial activation induced by ginsenoside Rg3 in rat primary culture: enhancement of type A Macrophage Scavenger Receptor expression. Arch Pharm Res 2005;28(10):1164-9. https://doi.org/10.1007/BF02972981
  90. Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, et al. Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol 2007;7(3):313-20. https://doi.org/10.1016/j.intimp.2006.04.021
  91. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC. Suppression of MAPKs/NF-kappaB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264.7 cells. Immunol Invest 2016;45(5):439-49. https://doi.org/10.3109/08820139.2016.1168830
  92. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Jimenez Perez ZE, et al. Ginsenoside Rg5:Rk1 attenuates TNF-alpha/IFN-gamma-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-kappaB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. Vitro Cell Dev Biol Anim 2016;52(3):287-95. https://doi.org/10.1007/s11626-015-9983-y
  93. Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 2009;14(1):67-84. https://doi.org/10.1517/14728210902769601
  94. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nature Reviews Neuroscience 2013;14(2):128-42. https://doi.org/10.1038/nrn3407
  95. Cheng Z, Zhang M, Ling C, Zhu Y, Ren H, Hong C, et al. Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules 2019;24(6).
  96. Shi YH, Li Y, Wang Y, Xu Z, Fu H, Zheng GQ. Ginsenoside-Rb1 for ischemic stroke: a systematic review and meta-analysis of preclinical evidence and possible mechanisms. Front Pharmacol 2020;11:285. https://doi.org/10.3389/fphar.2020.00285
  97. Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, et al. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 2005;374(2):92-7. https://doi.org/10.1016/j.neulet.2004.10.030
  98. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58(3):391-8. https://doi.org/10.1016/j.neuint.2010.12.015
  99. Li Q, Xiang Y, Chen Y, Tang Y, Zhang Y. Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK. Cell Physiol Biochem 2017;44(1):21-37. https://doi.org/10.1159/000484578
  100. Chen W, Guo Y, Yang W, Zheng P, Zeng J, Tong W. Involvement of Connexin40 in the protective effects of ginsenoside Rb1 against traumatic brain injury. Cell Mol Neurobiol 2016;36(7):1057-65. https://doi.org/10.1007/s10571-015-0299-y
  101. Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006;129(Pt 8):1953-71. https://doi.org/10.1093/brain/awl075
  102. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011;164(4):1079-106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
  103. Zhu D, Liu M, Yang Y, Ma L, Jiang Y, Zhou L, et al. Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neurosci Res 2014;92(9):1217-26. https://doi.org/10.1002/jnr.23397
  104. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol Sin 2005;26(1):56-62. https://doi.org/10.1111/j.1745-7254.2005.00019.x
  105. Xu L, Chen WF, Wong MS. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. Br J Pharmacol 2009;158(3):738-48. https://doi.org/10.1111/j.1476-5381.2009.00361.x
  106. Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTPprobenecid-induced parkinsonism mouse model by targeting alphasynuclein abnormalities in the substantia nigra. Toxicol Lett 2016;243:7-21. https://doi.org/10.1016/j.toxlet.2015.12.005
  107. Ardah MT, Paleologou KE, Lv G, Menon SA, Abul Khair SB, Lu JH, et al. Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils. Neurobiol Dis 2015;74:89-101. https://doi.org/10.1016/j.nbd.2014.11.007
  108. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 2019;22(3):401-12. https://doi.org/10.1038/s41593-018-0332-9
  109. Wan W, Cao L, Liu L, Zhang C, Kalionis B, Tai X, et al. Abeta(1-42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. Journal of Neurochemistry 2015;134(2):382-93. https://doi.org/10.1111/jnc.13122
  110. Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Abeta(1)(-)(4)(2)-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci 2012;32(26):8845-54. https://doi.org/10.1523/JNEUROSCI.6102-11.2012
  111. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, et al. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging 2007;28(7):977-86. https://doi.org/10.1016/j.neurobiolaging.2006.05.016
  112. Chen Y, Dong S, Zhang H, Sun Z, Shen X, Sun L, et al. Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J. Funct. Foods 2020;65:103713. https://doi.org/10.1016/j.jff.2019.103713
  113. Fan LM, Geng L, Cahill-Smith S, Liu F, Douglas G, McKenzie CA, et al. Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. J Clin Invest 2019;129(8):3374-86. https://doi.org/10.1172/jci125173
  114. Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. FASEB J 2006;20(8):1269-71. https://doi.org/10.1096/fj.05-5530fje
  115. Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, et al. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 2019;19(4):2975-98.
  116. Quan Q, Wang J, Li X, Wang Y. Ginsenoside Rg1 decreases Abeta(1-42) level by upregulating PPARgamma and IDE expression in the hippocampus of a rat model of Alzheimer's disease. PLoS One 2013;8(3):e59155. https://doi.org/10.1371/journal.pone.0059155
  117. Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis 2010;19(3):977-89. https://doi.org/10.3233/JAD-2010-1296