• 제목/요약/키워드: bifurcation analysis

Search Result 264, Processing Time 0.283 seconds

DYNAMICAL ANALYSIS OF A PLANT-HERBIVORE MODEL : BIFURCATION AND GLOBAL STABILITY

  • SAHA TAPAN;BANDYOPADHYAY MALAY
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.327-344
    • /
    • 2005
  • The first part of the paper deals with a brief introduction of the plant-herbivore model system along with deterministic analysis of local stability and Hopf-bifurcations. The second part consists of stability analysis of the limit cycle arising from Hopf-bifurcation and uniqueness of limit cycle. The third part deals with the study of global stability of the model system under consideration.

STABILITY AND BIFURCATION ANALYSIS OF A LOTKA-VOLTERRA MODEL WITH TIME DELAYS

  • Xu, Changjin;Liao, Maoxin
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, a Lotka-Volterra model with time delays is considered. A set of sufficient conditions for the existence of Hopf bifurcation are obtained via analyzing the associated characteristic transcendental equation. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form method and center manifold theory. Finally, the main results are illustrated by some numerical simulations.

BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

  • Zhou, Jun
    • 대한수학회지
    • /
    • 제57권1호
    • /
    • pp.249-281
    • /
    • 2020
  • A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.

SPATIAL INHOMOGENITY DUE TO TURING BIFURCATION IN A SYSTEM OF GIERER-MEINHARDT TYPE

  • Sandor, Kovacs
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.125-141
    • /
    • 2003
  • This paper treats the conditions for the existence and stability properties of stationary solutions of reaction-diffusion equations of Gierer-Meinhardt type, subject to Neumann boundary data. The domains in which diffusion takes place are of three types: a regular hexagon, a rectangle and an isosceles rectangular triangle. Considering one of the relevant features of the domains as a bifurcation parameter it will be shown that at a certain critical value a diffusion driven instability occurs and Turing bifurcation takes place: a pattern emerges.

BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION

  • Xu, Changjin;Liao, Maoxin
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.321-338
    • /
    • 2011
  • In this paper, a class of delayed epidemic model with diffusion is investigated. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation are also carried out to support our analytical findings. Finally, biological explanations and main conclusions are given.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Bifurcation Modes in the Limit of Zero Thickness of Axially Compressed Circular Cylindrical Shell

  • Kwon, Young-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2000
  • Bifurcation intability modes of axially compressed circular cylindrical shell are investigated in the limit of zero thickness (i.e., h (thickness) ${\rightarrow}$ 0) analytically, adopting the general stability theory developed by Triantafyllidis and Kwon (1987) and Kwon (1992). The primary state of the shell is obtained in a closed form using the asymptotic technique, and then the straight-forward bifurcation analysis is followed according to the general stability theory to obtain the bifurcation modes in the limit of zero thickness in a full analytical manner. Hence, the closed form bifurcation solution is obtained. Finally, the result is compared with the classical one.

  • PDF

Practical Bifurcation Criteria considering Inductive Power Pad Losses in Wireless Power Transfer Systems

  • Kim, Minkook;Lee, Jae-Woo;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, the bifurcation criteria for inductive power transfer (IPT) systems is suggested considering the inductive power pad losses. The bifurcation criteria for series-series (SS) and series-parallel (SP) topologies are derived in terms of the main parameters of the IPT system. For deriving precise criteria, power pad resistance is obtained by copper loss calculation and core loss analysis. Utilizing the suggested criteria, possibility of bifurcation occurrence can be predicted in the design process. In order to verify the proposed criteria, 50 W IPT laboratory prototype is fabricated and the feasibilities of the switching frequency and AC load resistance shift to escape from bifurcation are identified.

Investigation of the Mechanism of Period-doubling Bifurcation in Voltage Mode Controlled Buck-Boost Converter

  • Xie, Ling-Ling;Gong, Ren-Xi;Zhuo, Hao-Ze;Wei, Jiong-Quan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.519-526
    • /
    • 2011
  • An investigation of the mechanism of period-doubling bifurcation in a voltage mode controlled buck-boost converter operating in discontinuous conduction mode is conducted from the viewpoint of nonlinear dynamical systems. The discrete iterative model describing the dynamics of the close-loop is derived. Period-doubling bifurcation occurs at certain values of the feedback factor. Results from numerical simulations and experiments are provided to verify the evolution of perioddoubling bifurcation, and the results are consistent with the theoretical analysis. These results show that the buck-boost converters exhibit a wide range of nonlinear behavior, and the system exhibits a typical period-doubling bifurcation route to chaos under particular operating conditions.